Published online by Cambridge University Press: 22 January 2016
Let K be a commutative ring, A a K-algebra, and B a K-subalgebra of A. The object of this paper is to prove some results on higher derivations (in the sense of Jacobson [4]) of B into A. In § 1 we introduce a notion of equivalence among higher derivations. With this notion of equivalence, we prove in § 2 (Theorem 1) that the equivalence classes of higher K-derivations of B into A are in one-one correspondence with the isomorphism classes of certain filtered B ⊗ KA°-modules, where A° denotes the opposite algebra of A.