No CrossRef data available.
Article contents
A geometric proof of a reciprocity law
Published online by Cambridge University Press: 22 January 2016
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper we prove the reciprocity law for a Kummer extension of an algebraic number field K. The proof is similar to the proof of the same theorem by Kubota [14, 15]. Such methods were applied by Gauss [6, 7] to the cases K ═ Q, and by Habicht [8] to the case . We now discuss informally the structure of the proof. All definitions and statements made at this stage are only approximations to the truth, and shouldn’t be used as references for the later chapters.
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1995
References
[ 1 ]
Cassels, J. W. S., On Kummer Sums, Proc. London Math. Soc, (3), 21 (1970), 19–27.Google Scholar
[ 2 ]
Furtwängler, Ph., Uber die Reziprozitätsgesetz zwischen l ten Potenzreste in algebraischen Zahlkörpern, wenn l eine ungerade Primzahl bedeutet, Math. Annalen, 58.Google Scholar
[ 3 ]
Furtwängler, Ph., Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern, I, Math. Annalen, 67 (1909), 1–31.Google Scholar
[ 4 ]
Furtwängler, Ph., Die Reziprozitátsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkõrpern, II, Math. Annalen, 72 (1912), 346–386.Google Scholar
[ 5 ]
Furtwängler, Ph., Die Reziprozitátsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkõrpern, III, Math. Annalen, 74 (1913), 413–429.CrossRefGoogle Scholar
[ 8 ]
Habicht, , Ein elementarer Beweis des kubischen Reziprozitätsgesetzes, Math. Annalen, 139 (1959–60), 343–365.Google Scholar
[ 9 ]
Hilbert, D., Die Theorie der algebraischen Zahlkörper, Jahresbericht der Deutschen Mathematiker-Vereinigung, Band 4, (1894–95).Google Scholar
[10]
Über die Theorie des relativquadratischen Zahlkörpers, Math. Annalen Bd. 51 (1898), 1–127.CrossRefGoogle Scholar
[11]
Ito, Hiroshi, On a property of elliptic Dedekind sums, J. Number Theory, 27 (1987) 17–21.Google Scholar
[12]
Ito, Hiroshi, Dedekind sums and quadratic residue symbols, Nagoya Math. J., 118 (1990) 35–43.Google Scholar
[13]
Ito, Hiroshi, A note on Dedekind sums, in Number Theory, Proc. 1st Conf. Canadian Number Theory Association, Banff/Alberta (Canada)
1988, (1990), 239–248.Google Scholar
[14]
Kubota, T., Geometry of Numbers and Class Field Theory, Japan. J. Math., 13, No. 2 (1987), 235–275.Google Scholar
[15]
Kubota, T., Geometric Foundation of Class Field Theory, (in Japanese) Sugaka 44, 1 (1992), 1–12.Google Scholar
[16]
Massey, , Singular Homology Theory, Graduate Texts in Mathematics, Springer Verlag.Google Scholar
[17]
Matthews, C. R., Gauss Sums and Elliptic Functions I, The Kummer Sum, Invent. Math., 52 (1979), 163–185.CrossRefGoogle Scholar
[18]
Matthews, C. R., Gauss Sums and Elliptic Functions II. The Quartic Sum, Invent. Math., 54 (1979), 23–52.Google Scholar
[19]
Schering, , Verallgemeinerung des Gaußischen Criterium für den quadratischen Rest-charakter einer Zahl in Bezug auf eine andere, Werke Band I, 285–286.Google Scholar
[20]
Rademacher, und Grosswald, Dedekind sums, Carus Mathematical Monographs, No 16, Mathematical Assoc. America, Washington D. C, (1972).Google Scholar
[21]
Szech, , Dedekindsummen mit elliptischen Funktionen, Invent. Math., 76 (1984), 523–551.Google Scholar
[22]
Szech, , Dedekind sums and power residue symbols, Compositio. Math., 59 (1986), 89–112.Google Scholar
[23]
Szech, , Theta functions on the hyperbolic three space, Kokyuroku RIMS, Kyoto Univ., No. 603 (1987), 9–20.Google Scholar
[24]
Weil, A., Basic Number Theory, Grundlehren der Math. Wissenschaften in Einzeldarstellung Band 144, Springer-Verlag (1967).Google Scholar
You have
Access