Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T10:43:32.549Z Has data issue: false hasContentIssue false

Geometric determination of the Poles of Highest and second Highest order of Hodge And motivic Zeta functions

Published online by Cambridge University Press:  22 January 2016

B. Rodrigues*
Affiliation:
Departement Wiskunde, Celestijnenlaan, 200B, 3001, Leuven, Belgium. [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To any f ∈ ℂ[x1, … ,xn] \ ℂ with f(0) = 0 one can associate the motivic zeta function. Another interesting singularity invariant of f-1{0} is the zeta function on the level of Hodge polynomials, which is actually just a specialization of the motivic one. In this paper we generalize for the Hodge zeta function the result of Veys which provided for n = 2 a complete geometric determination of the poles. More precisely we give in arbitrary dimension a complete geometric determination of the poles of order n − 1 and n. We also show how to obtain the same results for the motivic zeta function.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2004

References

[1] A’Campo, N., La fonction zeta d’une monodromie, Comment. Math. Helv., 50 (1975), 233248.Google Scholar
[2] Artal, E., Cassou-Nogues, P., Luengo, I., and Melle, A., Monodromy Conjecture for some surface singularities, Ann. Sci. Ecole Norm. Sup., 35.4 (2002), 605640.Google Scholar
[3] Denef, J. and Loeser, F., Caractéristiques d’Euler-Poincaré, fonctions zeta locales, et modifications analytiques, J. Amer. Math. Soc, 5 (1992), 705720.Google Scholar
[4] Denef, J. and Loeser, F., Motivic Igusa zeta functions, J. Algebraic Geom., 7 (1998), 505537.Google Scholar
[5] Hironaka, H., Resolution of an algebraic variety over a field of characteristic zero, Ann. of Math., 79 (1964), 109326.Google Scholar
[6] Kollär, J., Singularities of Pairs, Summer Research Institute on Algebraic Geometry (Santa Cruz 1995), Proceedings of Symposia in Pure Mathematics, 62.1 (Amer. Math. Soc, 1997), 221287.Google Scholar
[7] Loeser, F., Fonctions d’Igusa p-adiques et polynômes de Bernstein, Amer. J. Math., 110 (1988), 122.Google Scholar
[8] Loeser, F., Fonctions d’Igusa p-adiques, polynômes de Bernstein, et polyèdres de Newton, J. Reine Angew. Math., 412 (1990), 7596.Google Scholar
[9] Poonen, B., The Grothendieck ring of varieties is not a domain, Math. Res. Letters, 9.4 (2002), 493498.Google Scholar
[10] Rodrigues, B., On the Monodromy Conjecture for curves on normal surfaces, Math. Proc. Cambridge Philos. Soc, 136 (2004), 313324.Google Scholar
[11] Rodrigues, B. and Veys, W., Holomorphy of Igusa’s and topological zeta functions for homogeneous polynomials, Pacific J. Math., 201.2 (2001), 429440.Google Scholar
[12] Rodrigues, B. and Veys, W., Poles of zeta functions on normal surfaces, Proc. London Math. Soc, 87 (2003), 164196.Google Scholar
[13] Veys, W., Poles of Igusa’s local zeta function and monodromy, Bull. Soc. Math. France, 121 (1993), 545598.Google Scholar
[14] Veys, W., Determination of the poles of the topological zeta function for curves, Manuscripta Math., 87 (1995), 435448.Google Scholar
[15] Veys, W., More congruences for numerical data of an embedded resolution, Compositio Math., 112 (1998), 313331.Google Scholar
[16] Veys, W., The topological zeta function associated to a function on a normal surface germ, Topology, 38 (1999), 439456.Google Scholar