No CrossRef data available.
Published online by Cambridge University Press: 22 January 2016
By means of an ad hoc modification of the so-called “Castelnuovo-Harris analysis” we derive an upper bound for the genus of integral curves on the three dimensional nonsingular quadric which lie on an integral surface of degree 2/c, as a function of k and the degree d of the curve. In order to obtain this we revisit the Uniform Position Principle to make its use computation-free. The curves which achieve this bound can be conveniently characterized.