Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T12:04:58.076Z Has data issue: false hasContentIssue false

The Genus Field and Genus Number in Algebraic Number Fields

Published online by Cambridge University Press:  22 January 2016

Yoshiomi Furuta*
Affiliation:
Mathematical Institute, Kanazawa University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let k be an algebraic number field and K be its normal extension of finite degree. Then the genus field K* of K over k is defined as the maximal unramified extension of K which is obtained from K by composing an abelian extension over k2). We call the degree (K*: K) the genus number of K over k.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1967

References

[1] Fröhlich, A., The genus field and genus group in finite number field, Mathematika, 6 (1959), 4046.CrossRefGoogle Scholar
[1′] Fröhlich, A., The genus field and genus group in finite number field, II, Mathematika, 6 (1959), 142146.Google Scholar
[2] Hasse, H., Zur Geschlechtertheorie in quadratischen Zahlkörpern, J. Math. Soc. Japan, 3 (1951), 4551.CrossRefGoogle Scholar
[3] Iyanaga, S. and Tamagawa, T., Sur la theorie du corps de classes sur le corps de nombres rationelles, J. Math. Soc. Japan, 3 (1951), 220227.Google Scholar
[4] Iwasawa, K., A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg, 20 (1956), 257258.Google Scholar
[5] Kuroda, S-N., Über die Klassenzahl eines relativ-zyklischen Zahlkörpers vom Primzahlgrad, Proc. Japan Akad. 40 (1964), 623626.Google Scholar
[6] Leopoldi, H., Zur Geschlechtertheorie in abelschen Zahlkörpern, Math. Nachr., 9 (1953), 351362.CrossRefGoogle Scholar
[7] Yokoyama, A., On class numbers of finite algebraic number fields, Tôhoku Math. J., 17 (1965), 349357.Google Scholar