Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T08:23:45.427Z Has data issue: false hasContentIssue false

Generalized Ono invariant and Rabinovitch’s theorem for real quadratic fields

Published online by Cambridge University Press:  22 January 2016

Ryuji Sasaki*
Affiliation:
Department of Mathematics, College of Science and Technology, Nihon University, Kanda, Tokyo 101, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let d be a square-free integer. Let

and {1, ω} forms a Z-basis for the ring of integers of the quadratic field We denote by Δ and hd the discriminant and the class number of respectively.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1988

References

[1] Ankeny, N. C., Chowla, S. and Hasse, H., On the class number of the real subfield of a cyclotomic field, J. reine angew. Math., 217 (1965), 217220.Google Scholar
[1] Dickson, L. K., Introduction to the Theory of Numbers, Dover Publ. Inc., New York (1957).Google Scholar
[1] Hua, L. K., Introduction to Number Theory, Springer-Verlag, Berlin Heiderberg New York (1982).Google Scholar
[1] Koike, M., Ono invariant for real quadratic field, preprint.Google Scholar
[1] Kutsuna, M., On a criterion for the class number of a quadratic number field to be one, Nagoya Math. J., 79 (1980), 123129.Google Scholar
[1] Mollin, R. A., Lower bounds for class numbers of real quadratic fields, Proc. Amer. Math. Soc, 96 (1986), 545550.CrossRefGoogle Scholar
[1] Mollin, R. A., On the insolubility of a class of Diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaud-Degert type, Nagoya Math. J., 105 (1987), 3947.Google Scholar
[1] Rabinovitch, G., Eindeutig keit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkorpern, J. reine angew. Math., 142 (1913), 153164.Google Scholar
[1] Sasaki, R., On a lower bound for the class number of an imaginary quadratic field, Proc. Japan Acad., 62A (1986), 3739.Google Scholar
[10] Sasaki, R., A characterization of certain real quadratic fields, ibid, 97100.Google Scholar
[11] Yokoi, H., On the Diophantine equation x2—py2=±4q and the class number of real subfields of a cyclotomic field, Nagoya Math. J., 91 (1983), 151161.Google Scholar
[12] Yokoi, H., Class number one problem for certain kind of real quadratic fields, preprint.Google Scholar