Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T10:41:21.130Z Has data issue: false hasContentIssue false

The generalized divisor problem and the Riemann hypothesis

Published online by Cambridge University Press:  22 January 2016

Hideki Nakaya*
Affiliation:
Department of Mathematics, Kanazawa University, Kanazawa 920, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let dz(n) be a multiplicative function defined by

where s = σ + it, z is a. complex number, and ζ(s) is the Riemann zeta function. Here ζz(s) = exp(z log ζ(s)) and let log ζ(s) take real values for real s > 1. We note that if z is a natural number dz(n) coincides with the divisor function appearing in the Dirichlet-Piltz divisor problem, and d-1(n) with the Möbious function.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1991

References

[1] Balasubramanian, R. and Ramachandra, K., On the number of integers n such that nd(n) ≤ x , Acta Arith., 49 (1988), 313322.CrossRefGoogle Scholar
[2] Delange, H., Sur des formules de Atle Selberg, Acta Arith., 19 (1971), 105146.CrossRefGoogle Scholar
[3] Dixon, R. D., On a generalized divisor problem, J. Indian Math., 28 (1964), 187196.Google Scholar
[4] Iseki, K., On a divisor problem generated by ζα(s) , Natural Science Report, Ochanomizu Univ., 4.2 (1953), p. 175.Google Scholar
[5] Ivić, A., “The Riemann zeta function,” Wiley Interscience, New-York, 1985.Google Scholar
[6] Kienast, A., Über die asymptotische darstellung der summatorischen funktion von Dirichletreihen mit positiven koeffizienten, Math. Z., 45 (1939), 554558.CrossRefGoogle Scholar
[7] Landau, E., “Handbuch der Lehre von der Verteilung der Primzahlen.,” Chelsea, New-York, 1969.Google Scholar
[8] Selberg, A., Note on a paper by Sathe, L. G., J. Indian Math. 18 (1954), 8387.Google Scholar
[9] Titchmarsh, E. C. and Brown, D. R. Heath, “The Theory of the Riemann Zeta-Function,” Oxford University Press, Oxford, 1986.Google Scholar