Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T23:13:09.545Z Has data issue: false hasContentIssue false

Gaussian random fields with projective invariance

Published online by Cambridge University Press:  22 January 2016

Akio Noda*
Affiliation:
Aichi University of Education
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We shall consider the class of Gaussian random fields Xα = {X(A); ARn} such that E{X(A) − X(B)} = 0 and E{(X(A) − X(B))2} = |AB|α (0 < α < 2), where |AB| denotes the Euclidean distance between two points A and B.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1975

References

[1] Dym, H. and McKean, H. P. Jr.: Application of de Branges spaces of integral functions to the prediction of stationary Gaussian processes, Ill. J. Math. 14 (1970), 299343.Google Scholar
[2] Fortus, M. I.: Formulas for extrapolation of random fields, Theory Prob. Appl. 7 (1962), 101108. (English translation)CrossRefGoogle Scholar
[3] Gangolli, R.: Positive definite kernels on homogeneous spaces and certain stochastic processes related to Levy’s Brownian motion of several parameters, Ann. Inst. Henri Poincaré section B vol. III n. 2 (1967), 121225.Google Scholar
[4] Kubo, I.: Some topics on random fields, Seminar on Probability vol. 26 (1967). (In Japanese)Google Scholar
[5] Levy, P.: Processus stochastiques et mouvement Brownien, Gauthier-Villars, Paris (1965).Google Scholar
[6] McKean, H. P. Jr.: Brownian motion with a several-dimensional time, Theory Prob. Appl. 8 (1963), 335354.CrossRefGoogle Scholar
[7] Molchan, G. M.: Characterization of Gaussian fields with Markov property, Dokl. Akad. Nauk. SSSR 197 (1971), 784787.Google Scholar
[8] Molchan, G. M. and Golosov, Ju. I.: Gaussian stationary processes with asymptotic power spectrum, Dokl. Akad. Nauk. SSSR 184 (1969), 546549.Google Scholar
[9] Yaglom, A. M.: Correlation theory of processes with random stationary n-th increments, Amer. Math. Soc. Transl. Ser 2 Vol. 8 (1958), 87141.Google Scholar
[10] Yaglom, A. M.: Some classes of random fields in n-dimensional space related to stationary random processes, Theory Prob. Appl. 2 (1957), 273320. (English translation)CrossRefGoogle Scholar