Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-04T21:30:05.325Z Has data issue: false hasContentIssue false

Fourier coefficients and Hecke eigenvalues

Published online by Cambridge University Press:  22 January 2016

Winfried Kohnen*
Affiliation:
Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany, [email protected]
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We will give certain asymptotic relations between p-eigenvalues and certain Fourier coefficients of Siegel cusp forms of genus g. In particular, it will turn out that potential strong bounds for the Fourier coefficients will imply potential strong bounds for the eigenvalues.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1998

References

[1] Böcherer, S. and Raghavan, S., On Fourier coefficients of Siegel modular forms, J. Reine Angew. Math., 384 (1988), 80101.Google Scholar
[2] Böcherer, S. and Kohnen, W., Estimates for Fourier coefficients of Siegel cusp forms, Math. Ann., 297 (1993), 499517.CrossRefGoogle Scholar
[3] Duke, W., Howe, R. and Li, J.-S., Estimating Hecke eigenvalues of Siegel modular forms, Duke Math. J., 67, no. 1 (1992), 219240.CrossRefGoogle Scholar
[4] Eichler, M. and Zagier, D., The theory of Jacobi forms, Progr. Math., 55 (1985).CrossRefGoogle Scholar
[5] Faltings, G. and Chai, Ch.-L., Degeneration of abelian varieties, Ergebnisse d. Math., 22, Berlin Heidelberg New York: Springer 1990.Google Scholar
[6] Freitag, E., Siegelsche Modulformen, Berlin Heidelberg New York: Springer 1983.Google Scholar
[7] Hatada, K., Estimates for eigenvalues of Hecke operators on Siegel cusp forms, J. Reine Angew. Math., 480 (1996), 105123.Google Scholar
[8] Kohnen, W., On Siegel modular forms, Compos. Math, 103 (1996), 219226.Google Scholar
[9] Kurokawa, N., Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two, Invent. Math., 49 (1978), 149165.CrossRefGoogle Scholar
[10] Langlands, R.P., Problems in the theory of automorphic forms, Lect. Not. in Modern Analysis and Appl. Ill, pp. 1861.Google Scholar
[11] Maass, H., Die Primzahlen in der Theorie der Siegelschen Modulformen, Math. Ann., 124 (1951), 87122.CrossRefGoogle Scholar
[12] Resnikoff, H.L. and Saldaña, R.L., Some properties of Fourier coefficients of Eisenstein series of degree two, J. Reine Angew. Math., 265 (1974), 90109.Google Scholar
[13] Satake, I., Spherical functions and Ramanujan conjecture, Algebraic groups and discontinuous subgroups (Borel, A. and Mostow, G.P., eds.), pp. 258264.Google Scholar
[14] Siegel, C.L., Uber die analytische Theorie der quadratischen Formen, Collected Works I (Chandrasekharan, K. and Maass, H., eds.), Springer, Berlin Heidelberg New York (1966), pp. 326405.Google Scholar
[15] Weissauer, R., The Ramanujan conjecture for genus two Siegel modular forms (an application of the trace formula), Preprint 1993.Google Scholar