Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:52:07.001Z Has data issue: false hasContentIssue false

Fonctions zêta -modulaires

Published online by Cambridge University Press:  11 January 2016

Alberto Mínguez*
Affiliation:
Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, 75005 Paris, France, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let F be a non-Archimedean locally compact field, of residual characteristic p, and let D be a finite-dimensional central division F-algebra. Let be a prime number different from p. In this article, generalizing the results of [GJ], we associate, to each -modular smooth irreducible representation π of GLm(D), two invariants L(T,π), ε(T,π,ψ), where T is an indeterminate and ψ is a nontrivial character of F.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2012

References

Références

[Bad] Badulescu, A. I., Global Jacquet-Langlands correspondence, multiplicity one and classification of automorphic representations, with an appendix by Neven Grbac, Invent. Math. 172 (2008), 383438.Google Scholar
[BH] Bushnell, C. J., Henniart, G., The Local Langlands Conjecture for GL(2), Grundlehren Math. Wiss. 335, Springer, Berlin, 2006.Google Scholar
[Dat] Dat, J.-F., ν-tempered representations of p-adic groups, I : l-adic case, Duke Math. J., 126 (2005), 397469.Google Scholar
[GJ] Godement, R., Jacquet, H., Zeta Functions of Simple Algebras, Lectures Notes in Math. 260, Springer, Berlin, 1972.Google Scholar
[HT] Harris, M., Taylor, R., The Geometry and Cohomology of Some Simple Shimura Varieties, with an appendix by Berkovich, V. G., Ann. of Math. Stud. 151, Princeton Univ. Press, Princeton, 2001.Google Scholar
[He1] Henniart, G., Caractérisation de la correspondance de Langlands locale par les facteurs e de paires, Invent. Math. 113 (1993), 339350.Google Scholar
[He2] Henniart, G., Une preuve simple des conjectures de Langlands pour GLn sur un corps p-adique, Invent. Math. 139 (2000), 439455.Google Scholar
[Ja1] Jacquet, H., “Zeta functions of simple algebras (local theory)” in Harmonic Analysis on Homogeneous Spaces (Williamstown, Mass., 1972), Amer. Math. Soc, Providence, 1973, 381386.Google Scholar
[Ja2] Jacquet, H., “Principal L-functions of the linear group” in Automorphic Forms, Representations and L-functions (Corvallis, Ore., 1977), Proc. Sympos. Pure Math. 33, Amer. Math. Soc, Providence, 1979.Google Scholar
[JL] Jacquet, H., Langlands, R. P., Automorphic Forms on GL(2), Lect. Notes in Math. 114, Springer, Berlin, 1970.Google Scholar
[Kud] Kudla, S., “Tate’s thesis” in An Introduction to the Langlands Program (Jerusalem, 2001), Birkhäuser, Boston, 2004, 109131.Google Scholar
[Mi1] Mínguez, A., Correspondance de Howe explicite : paires duales de type II, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), 717741.Google Scholar
[Mi2] Mínguez, A., Correspondance de Howe l-modulaire : paires duales de type II, thèse, Université de Orsay, 2006, http://www.math.jussieu.fr/~minguez/ (accessed 13 August, 2012).Google Scholar
[MS1] Mínguez, A. and Sécherre, V., Représentations lisses modulo l de GLm(D), preprint, http://www.math.jussieu.fr/~minguez/ (accessed 13 August, 2012).Google Scholar
[MS2] Mínguez, A. and Sécherre, V., Représentations banales de GLm(D), preprint, to appear in Compos. Math., http://www.math.jussieu.fr/~minguez/ (accessed 13 August, 2012).Google Scholar
[MS3] Mínguez, A. and Sécherre, V., Types modulo l pour les formes intérieures de GLn sur un corps local non archimédien, preprint, http://www.math.jussieu.fr/~minguez/ (accessed 13 August, 2012).Google Scholar
[MVW] Moeglin, C., Vignéras, M. F., and Waldspurger, J. L., Correspondance de Howe sur un corps p-adique, Lecture Notes in Math. 1291, Springer, Berlin, 1987.Google Scholar
[Tat] Tate, J., “Fourier analysis in number fields, and Hecke’s zeta functions” in Algebraic Number Theory (Brighton, 1965), Thompson, Washington, D.C., 1967, 305347.Google Scholar
[Vi1] Vignéras, M. F., Représentations modulaires de GL(2,F) en caractéristique l, F corps p-adique, p ≠ l, Compos. Math. 72 (1989), 3366.Google Scholar
[Vi2] Vignéras, M. F., Représentations l-modulaires d’un groupe réductif p-adique avec l ≠ p, Progr. Math. 137, Birkhäuser, Boston, 1996.Google Scholar
[Wei] Weil, A., “Fonction zêta et distributions” in Seminaire Bourbaki, Vol. 9, no. 312, Soc. Math. Fr., Paris, 1966.Google Scholar