Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T23:43:59.779Z Has data issue: false hasContentIssue false

Fano 4-Folds with scroll structure

Published online by Cambridge University Press:  22 January 2016

Adrian Langer*
Affiliation:
Instytut Matematyki UW, ul Banacha 2, 02-097, Warszawa, [email protected]
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We classify smooth Fano 4-folds with second betti number b2 = 2, possesing adjunction theoretic scroll structure. These manifolds occur to be projectivisations of coherent sheaves over Fano manifolds. The paper deals mainly with projectivisations of non-locally free rank 2 Fano sheaves over Fano 3-folds with b2 = 1, using Mori theory. By the way, we classify nef and big rank 2 bundles over P2 with the first Chern class (3).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1998

References

[AO] Ancona, V. and Ottaviani, G., Some Applications of Beilinson’s Theorem to Projective Spaces and Quadrics, Forum Math., 3 (1991), 157176.CrossRefGoogle Scholar
[A] Ando, T., On extremal rays of higher dimensional varieties, Invent, math., 81 (1985), 347357.CrossRefGoogle Scholar
[AW1] Andreatta, M. and Wiśniewski, J., A note on non-vanishing and applications, Duke Math. J., 72 (1993), 739755.CrossRefGoogle Scholar
[AW2] Andreatta, M. and Wiśniewski, J., On contractions of smooth varieties, MPI für Mathematik Bonn preprint, 9662.Google Scholar
[Be] Beilinson, A., Coherent sheaves on Pn and problems of linear algebra, Functional Anal. Appl., 12 (1978), 214216, (English translation).CrossRefGoogle Scholar
[BW] Ballico, E. and Wiśniewski, J., On Bănică sheaves and Fano manifolds, Compositio Mathematica, 102 (1996), 313335.Google Scholar
[ES] Ein, L. and Sols, I., Stable vector bundles on quadric hyper surf aces, Nagoya Math. J., 96 (1984), 1122.CrossRefGoogle Scholar
[Fuj] Fujita, T., Classification theories of polarized varieties, London Lect. Notes, 115 (1990), Cambridge Press.Google Scholar
[Fu1] Fulton, W., Intersection Theory, Ergebn. d. Math. u. ihr, Grenzg. 3 Folge-Band 2 (1984), Springer-Verlag.Google Scholar
[GH] Griffiths, Ph. and Harris, J., Principles of algebraic geometry, Wiley, 1978.Google Scholar
[Ha1] Hartshorne, R., Algebraic Geometry, Springer-Verlag, 1977.CrossRefGoogle Scholar
[Ha2] Hartshorne, R., Ample Vector Bundles, Publ. Math. IHES, 29 (1966).CrossRefGoogle Scholar
[SRS1] Hartshorne, R., Stable reflexive sheaves, Math. Ann., 254 (1980), 121176.CrossRefGoogle Scholar
[SRS2] Hartshorne, R., Stable reflexive sheaves II, Invent, math., 66 (1982), 165190.CrossRefGoogle Scholar
[SRS3] Hartshorne, R., Stable reflexive sheaves III, Math. Ann., 279 (1988), 517534.CrossRefGoogle Scholar
[Ka] Kawamata, Y., Small contractions of four dimensional algebraic manifolds, Math. Ann., 284 (1989), 595600.CrossRefGoogle Scholar
[KMM] Kawamata, Y., Matsuda, K. and Matsuki, K., Introduction to the minimal model problem, Proc. Sendai Conf. Adv. in Pure Math., 10 (1987), 283360.CrossRefGoogle Scholar
[L] Lübke, M., Chernclassen von Hermite-Vektorbündlen, Math. Ann., 260 (1982), 133141.CrossRefGoogle Scholar
[OSS] Okonek, Ch., Schneider, M. and Spindler, H., Vector bundles on complex projective spaces, Progress in Math., 3 (1980), Birkhäuser.CrossRefGoogle Scholar
[PSW1] Peternell, Th., Szurek, M. and Wiśniewski, J., Numerically effective vector bundles with small Chern classes, Lecture Notes in Math. 1507, Complex Algebraic Varieties, Bayreuth, 1990, Springer-Verlag (1992), 175213.Google Scholar
[PSW2] Peternell, Th., Szurek, M. and Wiśniewski, J., Fano manifolds and vector bundles, Math. Ann., 294 (1992), 151165.CrossRefGoogle Scholar
[Re] Reid, M., Projective morphisms according to Kawamata, Warwick preprint (1983).Google Scholar
[SS] Shiffman, B. and Sommese, A. J., Vanishing theorems on complex manifolds, Birkhäuser, 1985.CrossRefGoogle Scholar
[SzW1] Szurek, M. and Wiśniewski, J., Fano bundles over P3 and Q3, Pac. J. of Math., 141 (1990), 197208.CrossRefGoogle Scholar
[SzW2] Szurek, M., Fano bundles of rank 2 on surfaces, Compositio Math., 76 (1990), 295305.Google Scholar
[SzW3] Szurek, M., On Fano manifolds which are Pk-bundles over P2 , Nagoya Math. J., 120 (1990), 89101.CrossRefGoogle Scholar
[SzW4] Szurek, M., Conies, conic fibrations and stable bundles of rank 2 on some Fano threefolds, Rev. Roumaine Math. Pures Appl., 38 (1993), 729741.Google Scholar
[W1] Wisniewski, J., Ruled Fano 4-folds of index 2, Proc. of the AMS, 105 (1989), 5561.CrossRefGoogle Scholar
[W2] Wisniewski, J., A report on Fano manifolds of middle index and b2 ≥ 2, preprint in Mathematica Gotingensis, Schriftenreihe des SFB, Geometrie u. Analysis, Heft, 16 (1993).Google Scholar
[W3] Wisniewski, J., Fano manifolds and quadric bundles, Math. Z., 214 (1993), 261271.CrossRefGoogle Scholar