Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T21:45:16.875Z Has data issue: false hasContentIssue false

Families of K-3 Surfaces

Published online by Cambridge University Press:  22 January 2016

Alan L. Mayer*
Affiliation:
Brandeis University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let V be a 2-dimensional compact complex manifold. V is called a K-3 surface if : a) the irregularity q = dim H1(V, θ) of V vanishes and b) the first Chern class c1 of V vanishes. The canonical sheaf (of holo-morphic 2-forms) K of such a surface is trivial, since q = 0 implies that the Chern class map cx : Pic (V) → H2(V, Z) is injective : thus V has a nowhere zero holomorphic 2-form.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1972

References

[1] Artin, M., Some numerical criteria for contractability of curves on algebraic surfaces. Amer. J. Math 84 485496 (1962).Google Scholar
[2] Artin, M., On isolated rational singularities of surfaces. Amer. J. Math. 88 129136 (1966).Google Scholar
[3] Brieskorn, E., Über die auflösung gewisser singularitäten von holomorphen abbildungen. Math. Annalen 166 76102 (1966).CrossRefGoogle Scholar
[4] Brieskorn, E., Rationale singularitäten komplexer flächen. Inventiones Math. 4 336358 (1968).CrossRefGoogle Scholar
[5] d’Orgevel, B., Sur les surfaces algébriques dont tous les genres, sont 1. Paris, Gauthier-Villars (1945).Google Scholar
[6] Eichler, M., Quadratische formen und orthogonal gruppen. Springer Verlag (1952).Google Scholar
[7] Enriques, F., Le superficie algebriche Bologna. (1949).Google Scholar
[8] Kodaira, K., On compact analytic surfaces I. Annals of Math. 71 111152 (1960).Google Scholar
[9] Kodaira, K., On the structure of compact complex analytic surfaces I. Amer. J. Math. 86 751798 (1964).CrossRefGoogle Scholar
[10] Matsusaka, T., On some analytic familities of polarized algebraic varieties. J. Math. Kyoto Univ. 5 no. 3 279312 (1966).Google Scholar
[11] Milnor, J., On simply connected 4-manifolds. Int. Symp. Alg. Top. Mexico City 19.Google Scholar
[12] Mumford, D., The topology of normal singularities. Publ. I.H.E.S. no. 9 (1961).Google Scholar
[13] Nakai, J., A criterion of an ample sheaf. Amer. J. Math. 85 1426 (1963).Google Scholar
[14] Safarevic, K. et al., Algebraic surfaces. A.M.S. translation, Providence (1967).Google Scholar
[15] Siegel, C., Discontinuous groups, Gesammelte Abhandlungen II.Google Scholar
[16] Serre, J.-P., Faisceaux algébriques cohérent. Annals of Math. 61 197278 (1955).CrossRefGoogle Scholar
[17] Zariski, O., Complete linear systems on normal varieties. Annals of Math. 55 552592 (1952).Google Scholar