Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T23:43:34.119Z Has data issue: false hasContentIssue false

Extension of holomorphic L2-functions with weighted growth conditions

Published online by Cambridge University Press:  22 January 2016

Klas Diederich
Affiliation:
Fachbereich Mathematik, Bergische Universität-Gesamthochschule Wuppertal Gauβstraβe20, D-56 Wuppertal
Gregor Herbort
Affiliation:
Fachbereich Mathematik, Bergische Universität-Gesamthochschule Wuppertal Gauβstraβe20, D-56 Wuppertal
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article a new contribution to the following question is given: Let Ω ⊂ ⊂ Cn be a bounded pseudoconvex domain with C∞-smooth boundary, q∂Ω a fixed point and H a k-dimensional affine complex plane such that qH and H intersects ∂Ω at q transversally. Let U be a suitably small neighborhood of q, and denote by r a C∞-defining function of Ω on U. Under which conditions on ∂Ω near q is it possible to find an exponent η>0 > 0 such that every holomorphic function f on Ω′ = H ∩Ω∩ U with

where dλ′ denotes the Lebesgue-measure on H, can be extended to a holomorphic function ^f on ΩU such that even

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1992

References

[A-V] Andreotti, A.-Vesentini, E., Carleman estimates for the Laplace-Beltrami equation on complex manifolds, I.H.E.S. Publ., 25 (1965), 313362.Google Scholar
[B-D] Bonneau, P.- Diederich, K., Integral solution operators for the Cauchy-Riemann equations on pseudoconvex domains, Math. Ann., 286 (1990), 77100.Google Scholar
[D-F1] Diederich, K.-Fornaess, J. E., Pseudoconvex domains with real-analytic boundary, Ann. Math., 107 (1978), 371384.Google Scholar
[D-F2] Diederich, K.-Fornaess, J. E., Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary Ann. Math., 110 (1979), 575592.Google Scholar
[D-F3] Diederich, K.-Fornaess, J. E., Pseudoconvex Domains: Bounded Strictly Pluri-subharmonic Exhaustion Functions, Invent. Math., 39 (1977), 129141.Google Scholar
[D-H-O] Diederich, K.-Herbort, G.-Ohsawa, T., The Bergman kernel on uniformly extendable pseudoconvex domains, Math. Ann., 273 (1986), 471478.Google Scholar
[D-L] Diederich, K.-Lieb, I., Konvexität in der komplexen Analysis DMV-Seminar, Band 2. Birkhäuser Basel-Boston-Stuttgart, 1981.Google Scholar
[H1] Hörmander, L., L2 estimates and existence for the δ operator, Acta Math., 113 (1965),89152.Google Scholar
[H2] Hörmander, L., An Introduction to Complex Analysis in Several Variables. 2nd Edition, Van Nostrand Amsterdam-London-New York, 1973.Google Scholar
[N] Nakano, S., Extension of holomophic functions with growth conditions, Publ. RIMS, Kyoto Univ., 22 (1986), 247258.Google Scholar
[01] Ohsawa, T., Boundary Behavior of the Bergman Kernel Function Publ. RIMS, Kyoto Univ., 16 (1984), 897902.Google Scholar
[02] Ohsawa, T., On the extension of L2-holomorphic functions II, Publ. RIMS, Kyoto Univ. 24(1988), 265275.Google Scholar
[0-T] Ohsawa, T.-Takegoshi, K., On the extension of L2-holomorphic functions, Math. Z., 195(1987), 197204.Google Scholar
[Y] Yoshioka, T., Cohomologie à estimations L2 avec poids plurisousharmoniques et extension des fonctions holomorphes avec contrôle de la croissance, Osaka J. Math., 19(1982), 787813.Google Scholar