Published online by Cambridge University Press: 22 January 2016
In this article a new contribution to the following question is given: Let Ω ⊂ ⊂ Cn be a bounded pseudoconvex domain with C∞-smooth boundary, q ∈ ∂Ω a fixed point and H a k-dimensional affine complex plane such that q ∈ H and H intersects ∂Ω at q transversally. Let U be a suitably small neighborhood of q, and denote by r a C∞-defining function of Ω on U. Under which conditions on ∂Ω near q is it possible to find an exponent η>0 > 0 such that every holomorphic function f on Ω′ = H ∩Ω∩ U with
where dλ′ denotes the Lebesgue-measure on H, can be extended to a holomorphic function ^f on Ω ∩ U such that even