Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T07:50:24.570Z Has data issue: false hasContentIssue false

Equi-Distribution of Values for the Third and the Fifth Painlevé Transcendents

Published online by Cambridge University Press:  11 January 2016

Shun Shimomura*
Affiliation:
Department of Mathematics Keio University, 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522, Japan, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show equi-distribution properties of values for the third and the fifth Painlevé transcendents in a sectorial domain. For our purpose we define a characteristic function of sectorial domain type by employing value distribution theory in a half plane. Some special cases admit analogues of Borel exceptional values. Similar results are obtained for modified versions of these Painlevé transcendents, which are of infinite growth order.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2008

References

[1] Gromak, V. I., Laine, I. and Shimomura, S., Painlevé Differential Equations in the Complex Plane, Walter de Gruyter, Berlin, New York, 2002.Google Scholar
[2] Hayman, W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.Google Scholar
[3] Hinkkanen, A. and Laine, I., Growth results for Painlevé transcendents, Math. Proc. Cambridge Philos. Soc., 137 (2004), 645655.CrossRefGoogle Scholar
[4] Jank, G. and Volkmann, L., Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser, Basel, Boston, 1985.Google Scholar
[5] Laine, I., Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, New York, 1993.Google Scholar
[6] Levin, B. Ja. and Ostrovskii, I. V., On the dependence of the growth of an entire function and the distribution of the zeros of its derivatives, Amer. Math. Soc. Transl., AMS, Vol. 32 (1963), 322357.Google Scholar
[7] Mues, E. and Redheffer, R., On the growth of logarithmic derivatives, J. London Math. Soc., 8 (1974), 412425.Google Scholar
[8] Sasaki, Y., Value distribution of the fifth Painlevé transcendents in sectorial domains, J. Math. Anal. Appl., 330 (2007), 817828.Google Scholar
[9] Sasaki, Y., Value distribution of the third Painlevé transcendents in sectorial domains, preprint.Google Scholar
[10] Shimomura, S., On solutions of the fifth Painlevé equation on the positive real axis II, Funkcial. Ekvac., 30 (1987), 203224.Google Scholar
[11] Shimomura, S., Value distribution of Painlevé transcendents of the third kind, Complex Variables, 40 (1999), 5162.Google Scholar
[12] Shimomura, S., Value distribution of Painlevé transcendents of the fifth kind, Result. Math., 38 (2000), 348361.Google Scholar
[13] Shimomura, S., The first, the second and the fourth Painlevé transcendents are of finite order, Proc. Japan Acad., Ser. A, 77 (2001), 4245.Google Scholar
[14] Shimomura, S., Growth of the first, the second and the fourth Painlevé transcendents, Math. Proc. Cambridge Philos. Soc., 134 (2003), 259269.Google Scholar
[15] Shimomura, S., Lower estimates for the growth of Painlevé transcendents, Funkcial. Ekvac., 46 (2003), 287295.Google Scholar
[16] Shimomura, S., Growth of modified Painlevé transcendents of the fifth and the third kind, Forum Math., 16 (2004), 231247.Google Scholar
[17] Shimomura, S., Lower estimates for the growth of the fourth and the second Painlevé transcendents, Proc. Edinburgh Math. Soc., 47 (2004), 231249.Google Scholar
[18] Steinmetz, N., Zur Wertverteilung der L¨osungen der vierten Painlevéschen Differentialgleichung, Math. Z., 181 (1982), 553561.Google Scholar
[19] Steinmetz, N., Value distribution of Painlevé transcendents, Israel J. Math., 128 (2002), 2952.Google Scholar
[20] Steinmetz, N., Boutroux’s method vs. re-scaling lower estimates for the orders of growth of the second and fourth Painlevé transcendents, Port. Math., 61 (2004), 369374.Google Scholar
[21] Tsuji, M., On Borel’s directions of meromorphic functions of finite order, Tohoku Math. J., 2 (1950), 97112.Google Scholar
[22] Wang, S., On the sectorial oscillation theory of f″ +A(z)f = 0, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 92 (1994).Google Scholar