Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T06:01:31.983Z Has data issue: false hasContentIssue false

Eichler Maps and Hyperbolic Fourier Expansion

Published online by Cambridge University Press:  22 January 2016

Toyokazu Hiramatsu*
Affiliation:
College of General Education, Osaka University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In his lecture notes ([1, pp. 33-35], [2, pp. 145-152]), M. Eichler reduced ‘quadratic’ Hilbert modular forms of dimension —k {k is a positive integer) to holomorphic automorphic forms of dimension — 2k for the reproduced groups of indefinite ternary quadratic forms, by means of so-called Eichler maps.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1970

References

[1] Eichler, M., La theorie des corréspondances des corps des fonctions algébriques et leurs applications dans L’arithmetiques, Lecture Notes, Nancy, 1954.Google Scholar
[2] Eichler, M., Lectures on modular correspondences, Tata Institute, Bombay, 195556.Google Scholar
[3] Gundlach, K.B., Die Fixpunkte einiger Hilbertscher Modulgruppen, Math. Ann. 157 369390.CrossRefGoogle Scholar
[4] Kummer, E.E., De integralibus definitis et seriebus infinitis, J. reine angew. Math. 17 (1837), 210227.Google Scholar
[5] Petersson, H., Zur analytischen Theorie der Grenzkreisgruppen V, Math. Z. 44(1939), 127155.Google Scholar
[6] Petersson, H., Einheitliche Begrundung der Vollstandigkeitssatze fur der Poincaréschen Reihen von reeller Dimension bei beliebigen Grenzkreisgruppen von erste Art, Abh. der Hamburg Univ. 14(1941), 2260.Google Scholar
[7] Petersson, H., Ein Summationsverfahren fur die Poincareschen Reihen von der Dimension -2 zu den hyperbolischen Fixpunktepaaren, Math. Z. 49(1944), 441496.Google Scholar
[8] Shimizu, H., On discontinuous groups operating on the product of the upper half plane, Ann. of Math. 77(1963), 3371.Google Scholar
[9] Watson, G.N., A treatise on the theory of Bessel functions, 2nd edition, Cambridge, 1962.Google Scholar