Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T13:27:19.605Z Has data issue: false hasContentIssue false

Dirichlet series and automorphic functions associated to a quadratic form

Published online by Cambridge University Press:  22 January 2016

Manfred Peter*
Affiliation:
Mathematisches Institut, Albert-Ludwigs-Universität, Eckerstr. 1, D-79104 Freiburg, Germany, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Starting from the reciprocity law for Gaussian sums attached to an integral quadratic form we prove functional equations for a new kind of Dirichlet series in two variables. For special values of one variable they are of Hecke type with respect to the other variable. With Weil’s converse theorem we derive automorphic functions which generalize Siegel’s genus invariant and the automorphic functions of Cohen and Zagier.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2003

References

[1] Bruinier, J.H., Modulformen halbganzen Gewichts und Beziehungen zu Dirichletreihen, Diplomarbeit, Universität Heidelberg, 1997.Google Scholar
[2] Cohen, H., Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann., 217 (1975), 271285.CrossRefGoogle Scholar
[3] Datskovsky, B.A., On Dirichlet series whose coefficients are class numbers of binary quadratic forms, Nagoya Math. J., 142 (1996), 95132.CrossRefGoogle Scholar
[4] O’Meara, O.T., Introduction to Quadratic Forms, Springer, 1973.CrossRefGoogle Scholar
[5] Peter, M., Dirichlet series in two variables, J. Reine Angew. Math., 522 (2000), 2750.Google Scholar
[6] Shimura, G., On modular forms of half integral weight, Ann. Math., 97 (1973), 440481.CrossRefGoogle Scholar
[7] Shintani, T., On zeta-functions associated with the vector space of quadratic forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22 (1975), 2565.Google Scholar
[8] Siegel, C.L., Die Funktionalgleichungen einiger Dirichlet’scher Reihen, Math. Z., 63 (1956), 363373.CrossRefGoogle Scholar
[9] Siegel, C.L., Über das quadratische Reziprozitätsgesetz in algebraischen Zahlkörpern, Nachr. Akad. Wiss. Göttingen, math.-phys. Kl. 1960, 116.Google Scholar
[10] Ueno, T., Elliptic modular forms arising from zeta functions in two variables attached to the space of binary Hermitian forms, J. Number Th., 86 (2001), 302329.CrossRefGoogle Scholar
[11] Ueno, T., Modular forms arising from zeta functions in two variables attached to pre-homogeneous vector spaces acted on by maximal parabolic subgroups of orthogonal groups, PhD thesis, Tokyo, 2001.Google Scholar
[12] Weil, A., Über die Bestimmung Dirichlet’scher Reihen durch Funktionalgleichungen, Math. Ann., 168 (1967), 149156.CrossRefGoogle Scholar
[13] Zagier, D.B., Nombres de classes et fomes modulaires de poids 3/2, C.R. Acad. Sc. Paris, 281 (1975), 883886.Google Scholar