Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T09:59:29.210Z Has data issue: false hasContentIssue false

Density measure of rational points on Abelian varieties

Published online by Cambridge University Press:  22 January 2016

Michel Waldschmidt*
Affiliation:
Université P. et M. Curie (Paris VI), Institut Mathématique de Jussieu, Problèmes Diophantiens, Case 247, 4, Place Jussieu, F – 75252 PARIS CEDEX 05, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let be a simple Abelian variety of dimension g over ℚ, and let ℓ be the rank of the Mordell-Weil group (ℚ). Assume ℓ ≥ 1. A conjecture of Mazur asserts that the closure of (ℚ) into (ℝ) for the real topology contains the neutral component (ℝ)0 of the origin. This is known only under the extra hypothesis ℓ ≥ g2 - g + 1. We investigate here a quantitative refinement of this question: for each given positive h, the set of points in (ℚ) of Néron-Tate height ≤ h is finite, and we study how these points are distributed into the connected component (ℝ)0. More generally we consider an Abelian variety A over a number field K embedded in ℝ, and a subgroup Γ of (K) of sufficiently large rank. The effective result of density we obtain relies on an estimate of Diophantine approximation, namely a lower bound for linear combinations of determinants involving Abelian logarithms.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1999

References

[1] Bertrand, D. et Masser, D.W., Linear forms in elliptic integrals, Invent. Math., 58 (1980), no. 3, 283288.CrossRefGoogle Scholar
[2] Colliot-Théléne, J.-L., Skorobogatov, A. N. and Swinnerton-Dyer, P., Double fibres and double covers: paucity of rational points, Acta Arith., 79 (1997), no. 2, 113135.Google Scholar
[3] Hirata-Kohno, N., Approximations simultanées sur les groupes algébriques commutatifs, Compositio Math., 86 (1993), no. 1, 6996.Google Scholar
[4] Huisman, J., Heights on Abelian varieties, in Diophantine Approximation and Abelian varieties (Soesterberg, 1992) (B. Edixhoven and J.-H. Evertse, eds.), Chap V, Lecture Notes in Math., 1566, Springer-Verlag (1993), pp. 5161.Google Scholar
[5] Lang, S., Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 231, Springer-Verlag, Berlin-New York, 1978.Google Scholar
[6] Lang, S., Fundamental of Diophantine geometry, Springer-Verlag, New York-Berlin, 1983.Google Scholar
[7] Lang, S., Number theory III Diophantine geometry, Encyclopaedia of Mathematical Sciences, 60, Springer-Verlag, Berlin, 1991. Corrected second printing: Survey of Diophantine Geometry, 1997.Google Scholar
[8] Masser, D. W., Elliptic functions and transcendence, Lecture Notes in Mathematics, 437, Springer-Verlag, Berlin-New York, 1975.Google Scholar
[9] Mazur, B., The topology of rational points, Experiment. Math., 1 (1992), no. 1, 3545.CrossRefGoogle Scholar
[10] Roy, D., Simultaneous approximation in number fields, Invent. Math., 109 (1992), no. 3, 547556.Google Scholar
[11] Schneider, Th., Einführung in die transzendenten Zahlen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957. Introduction aux nombres transcendants Traduit de l’allemand par P. Eymard. Gauthier-Villars, Paris 1959.Google Scholar
[12] Serre, J-P., Lectures on the Mordell-Weil theorem, Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, Aspects of Mathematics, E15, Friedr. Vieweg & Sohn, Braunschweig, 1989. Second Ed., 1990.Google Scholar
[13] Silverman, J., The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer-Verlag, New York-Berlin, 1986. Advanced topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 151, Springer-Verlag, New York, 1994.Google Scholar
[14] Waldschmidt, M., Nombres transcendants et groupes algébriques, With appendices by Daniel Bertrand and Jean-Pierre Serre, Astérisque, 69–70, Société Mathématique de France, Paris, 1979, 218 pp. Second edition 1987.Google Scholar
[15] Waldschmidt, M., Dependence of logarithms of algebraic points, in Number theory, Vol. II (Budapest, 1987), Colloq. Math. Soc. János Bolyai, 51, North-Holland, Amsterdam (1990), pp. 10131035.Google Scholar
[16] Waldschmidt, M., On the transcendence methods of Gel’fond and Schneider in several variables, in New advances in transcendence theory (Durham, 1986), Cambridge Univ. Press, Cambridge-New York (1988), pp. 375398.Google Scholar
[17] Waldschmidt, M., Densité de points rationnels sur un groupe algébrique, Experiment. Math., 3 (1994), no. 4, 329352 et 4 (1995), no. 3, 255.Google Scholar
[18] Waldschmidt, M., Topologie des points rationnels, Cours de Troisiéme Cycle 1994/95, Univ. P. et M. Curie, 168 pp. http://www.math.jussieu.fr/˜miw/TPR.html.Google Scholar
[19] Waldschmidt, M., Approximation diophantienne dans les groupes algébriques commutatifs (I): Une version effective du théoréme du sous-groupe algébrique, J. reine angew. Math., 493 (1997), 61113.Google Scholar
[20] Waldschmidt, M., Approximation simultanée par des produits de puissances de nombres algébriques, Acta Arith., 79 (1997), no. 2, 137162.Google Scholar