Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T10:39:41.257Z Has data issue: false hasContentIssue false

Deformations of real analytic functions and the natural stratification of the space of real analytic functions

Published online by Cambridge University Press:  22 January 2016

Takuo Fukuda*
Affiliation:
Department of Mathematics, Chiba University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let A be a real analytic set, M be a compact real analytic manifold and f : A × MR be a real analytic function. Then we have a family of real analytic functions fa, a ∈ A, on M defined by fa(X) = f(a, x).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1976

References

[1] Bruhat, F. and Whitney, H.: Quelques propriétés fondamentales des ensembles analytiques-réels, Comm. Math. Helv. 33 (1959), 132160.Google Scholar
[2] Cerf, J.: La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, publ. Math. I.H.E.S. 39 (19970), 1173.Google Scholar
[3] Hironaka, H.: Subanalytic subsets, Number theory, algebraic geometry and commutative algebra, Kinokuniya, Tokyo, 1973.Google Scholar
[4] , D. T.: These à L’Université de Paris VII (1971).Google Scholar
[5] Mather, J.: Notes on topological stability, Lecture notes, Harvard Univ. (1970).Google Scholar
[6] Thorn, R.: Ensembles et morphismes stratifiés, Bull. A. M. S. 75 (1969), 240284.Google Scholar
[7] Whitney, H.: Tangents to an analytic variety, Ann. of Math. 81 (1965), 496549.Google Scholar