Published online by Cambridge University Press: 22 January 2016
Let H be the Levi subgroup of a parabolic subgroup of a split reductive group G. In characteristic zero, an irreducible representation V of G decomposes when restricted to H into a sum V = ⊕mαWα where the Wα’s are distinct irreducible representations of H. We will give a formula for the multiplicities mα. When H is the maximal torus, this formula is Weyl’s character formula. In theory one may deduce the general formula from Weyl’s result but I do not know how to do this.
Partially supported by NSF Grant #MPS75-05578.