Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T23:38:29.003Z Has data issue: false hasContentIssue false

Courbes elliptiques ayant bonne réduction en dehors de 3

Published online by Cambridge University Press:  22 January 2016

Gérard Ligozat*
Affiliation:
Université de Paris-Sud
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Le résultat principal de ce travail est le suivant: les courbes elliptiques définies sur Q, et ayant bonne réduction en dehors de 3, vérifient la conjecture de Weil (cf. [2], Th. 2).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1979

References

Bibliographie

[ 1 ] Hadano, T., On the conductor of an elliptic curve with a rational point of order 2. Nagoya Math. J., 53 (1974), 199210.Google Scholar
[ 2 ] Honda, T. and Miyawaki, I., Zeta-f unctions of elliptic curves of 2-power conductor. J. Math. Soc. Japan, 26, n° 2 (1974), 362373.Google Scholar
[ 3 ] Koike, M., On certain Abelian varieties obtained from newforms of weight 2 on Γ0(34) and Γ0(35), Nagoya Math. J., 62 (1976), 2939.Google Scholar
[ 4 ] Ligozat, G., Courbes modulaires de genre 1. Bull. Soc. Math. France, Suppl., Mém. N° 43, 80 p (1975).Google Scholar
[ 5 ] Ligozat, G., Courbes modulaires de niveau 11, in Modular Functions of one variable V. Lecture Notes in Math. 601, 149237, Berlin-Heidelberg-New York, Springer (1977).Google Scholar
[ 6 ] Shimura, G., Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan, N° 11, Iwanami Shoten and Princeton University Press (1971).Google Scholar
[ 7 ] Shimura, G., On elliptic curves with complex multiplication as factors of the jacobians of modular function fields. Nagoya Math. J., 43 (1971), 199208.Google Scholar
[ 8 ] Shimura, G., On the factors of the jacobian variety of a modular function field. J. Math. Soc. Japan, 25, N° 3 (1973), 523544.Google Scholar
[ 9 ] Vélu, J., Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris, 273 (1971), 238241.Google Scholar