No CrossRef data available.
Published online by Cambridge University Press: 22 January 2016
Let Xt(ω)) be a stochastic process with stationary independent increments on the N-dimensional Euclidean space RN, right continuous in t ≧ 0 and starting at the origin. Let C0(RN) be the Banach space of real-valued continuous functions on RN vanishing at infinity with norm . The process induces a transition semigroup of operators Tt on C0(RN) :
Ttf(x) = Ef(x + Xt).