Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T23:26:26.620Z Has data issue: false hasContentIssue false

Completely superharmonic measures for the infinitesimal generator A of a diffusion semi-group and positive eigen elements of A

Published online by Cambridge University Press:  22 January 2016

Masayuki Itô
Affiliation:
Department of Mathematics, Faculty of Science, Nagoya University, Nagoya, Japan
Noriaki Suzuki
Affiliation:
Department of Mathematics, Faculty of Science, Nagoya University, Nagoya, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X be a locally compact Hausdorff space with countable basis. We denote by

M(X) the topological vector space of all real Radon measures in X with the vague topology,

MK(X) the topological vector space of all real Radon measures in X whose supports are compact with the usual inductive limit topology.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1981

References

[1] Berg, C. and Forst, G., Potential theory on locally compact abelian group, Springer-Verlag, Berlin, 1975.CrossRefGoogle Scholar
[2] Brelot, M., Eléments de la théorie classique du potential, Les cours de Sorbonne, Paris, 1959.Google Scholar
[3] Choquet, G., Lectures on analysis, vol. 1, 2 and 3, W. A. Benjamin, 1969.Google Scholar
[4] Choquet, G. and Deny, J., Aspects linéaires de la théorie du potentiel. Théorème de dualité et applications, C. R. Acad. Sci. Paris, 243 (1959), 764767.Google Scholar
[5] Choquet, G. and Deny, J., Sur l’équation de convolution μ = μ*σ , C. R. Acad. Sci. Paris, 250 (1960), 799801.Google Scholar
[6] Constantinescue, C. and Cornea, A., Potential theory on harmonie space, Springer-Verlag, Berlin, 1972.CrossRefGoogle Scholar
[7] Deny, J., Noyaux de convolution de Hunt et noyaux associés à une famille fondamentale, Ann. Inst. Fourier, Grenoble, 12 (1962), 643667.CrossRefGoogle Scholar
[8] Itô, M., Sur le principle relatif de domination pour les noyaux de convolution, Hiroshima Math. J., 5 (1975), 293350.CrossRefGoogle Scholar
[9] Itô, S., Fundamental solution of parabolic differential equations and boundary value problems, Japan. J. Math., 27 (1957), 55102.CrossRefGoogle Scholar
[10] Itô, S., On existence of Green function and positive superharmonic functions for linear elliptic operators of second order, J. Math. Soc. Japan 16 (1964), 299306.CrossRefGoogle Scholar
[11] Itô, S., Martin boundary for linear elliptic differential operators of second order in a manifold, J. Math. Soc. Japan, 16 (1964), 307334.CrossRefGoogle Scholar
[12] Itô, S., On definitions of superharmonic functions, Ann. Inst. Fourier, Grenoble, 25 (1975), 309316.CrossRefGoogle Scholar
[13] Krasnosel’skii, >M. A., Positive solution of operator equations, P. Noodfoff Ltd. Groningen, The Netherlands, 1960.Google Scholar
[14] Miranda, C., Partial differential equations of elliptic type, Springer-Verlag, Berlin, 1970.Google Scholar
[15] Noviskii, >M. V., Representation of completely L-superharmonic functions, Math. Nauk. Izv., 9 (1975), no. 6, 12791296.CrossRefGoogle Scholar
[16] Noviskii, M. V., Integral representation of totally excessive elements, Soviet Math. Dokl., 16 (1975), no. 6, 15101514.Google Scholar
[17] Phelps, >R. R., Lecture on Choquet’s theorem, Van Nostrand, Princeton, N. J., 1966.Google Scholar
[18] Schwarts, L., Théorie des distributions, Hermann, Paris, 1966.Google Scholar
[19] Šur, M. G., The Martin boundary for a linear elliptic second-order operator, Izv. Akad Nauk. SSSR, ser Math., 27 (1963), 4560.Google Scholar