Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T08:05:45.920Z Has data issue: false hasContentIssue false

Cohomological dimension of group schemes

Published online by Cambridge University Press:  22 January 2016

Hiroshi Umemura*
Affiliation:
Department of Mathematics, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In Umemura [9], we calculated the invariants algcd (G), p(G), q(G) for a commutative algebraic group G. We remark that all the results hold for a group scheme which is not necessarily commutative.

To determine p(G), I cannot succeed in dropping the hypothesis “quasi-projective” but this assumption is satisfied in the characteristic 0 case.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1973

References

[1] Andreotti, A. and Grauert, H.: Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193259.CrossRefGoogle Scholar
[2] Chow, W. L.: On the projective embedding of homogeneous varieties. A symp. in honor of S. Lefschetz, 122128, Princeton University press.Google Scholar
[3] Dieudonné, J. et Grothendieck, A.: E.G.A.Google Scholar
[4] Hartshorne, R.: Ample subvarieties of algebraic varieties, Lecture notes in mathematics 156, Springer.Google Scholar
[5] Matsushima, Y.: Fibres holomorphes sur un tore complexe, Nagoya Math. J., 14, 124 (1959).CrossRefGoogle Scholar
[6] Mumford, D.: Abelian varieties, Oxford University press.Google Scholar
[7] Oort, F.: Algebraic group schemes in characteristic zero are reduced, Inventiones math., 2 (1966), 7980.CrossRefGoogle Scholar
[8] Rosenlicht, M.: Some basic theorems on algebraic groups, Amer. J. of Math., 78 (1956), 401443.CrossRefGoogle Scholar
[9] Umemura, H.: Dimension cohomologique des groupes algébriques commutatif s, Ann, Scien. de l’Ecole Normale Supérieure, 4e series 5 (1972), 265276.Google Scholar
[10] Umemura, H.: La dimension cohomologique des surfaces algébriques, Nagoya Math. J., 47 (1972), 155160.CrossRefGoogle Scholar