Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T23:26:03.440Z Has data issue: false hasContentIssue false

Cofiniteness of local cohomology modules for ideals of dimension one

Published online by Cambridge University Press:  22 January 2016

Ken-Ichi Yoshida*
Affiliation:
Graduate School of Polymathematics, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we prove that for any ideal I of dimension one is I-cofinite for all i and for any finite A-module M. Furthermore, for any ideal I over any regular local ring A, we investigate the relationship between I-cofiniteness and vanishing for local cohomology modules .

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1997

References

[1] Brodmann, M. and Rung, J., Local cohomology and the connectedness dimension in algebraic varieties, Comment. Math. Helv., 61 (1986), 481490.CrossRefGoogle Scholar
[2] Call, F. W. and Sharp, R. Y., A short proof of the Local Lichtenbaum-Hartshorne Theorem on the vanishing of local cohomology, Bull. London Math. Soc, 18 (1986), 261264.Google Scholar
[3] Delfino, D., On the cofiniteness of local cohomology modules, Math. Proc. Camb. Phil. Soc, 115 (1994), 7984.CrossRefGoogle Scholar
[4] Faltings, G., Uber die Annulatoren lokaler Kohomologiegruppen, Arch. Math., 30 (1978), 473476.Google Scholar
[5] Grothendieck, A., Local cohomology, notes by R. Hartshorne, Lecture notes in Math., 862, Springer-Verlag, 1966.Google Scholar
[6] Grothendieck, A., Cohomologie locale des faisceaux cohérents et théormes de Lefshetz locaux et globaux, S.G.A. II, North-Holland, 1968.Google Scholar
[7] Hartshorne, R., Complete intersections and connectedness, Amer. J. Math., 84 (1962), 497508.Google Scholar
[8] Hartshorne, R., Affine Duality and Cofiniteness, Invent. Math., 9 (1970), 145164.Google Scholar
[9] Hochster, M. and Huneke, C., Indecomposable Canonical Modules and Connectedness, Comp. Math., 159 (1994), 197208.Google Scholar
[10] Huneke, C., Problems on local cohomology, in Free Resolutions in Commutative Algebra and Algebraic Geometry: Sundance 90 (Edited by Eisenbud, D. and Huneke, C.).Google Scholar
[11] Huneke, C. and Koh, J., Cofiniteness and vanishing of local cohomology modules, Math. Proc. Camb. Phil. Soc, 110 (1991), 421429.Google Scholar
[12] Huneke, C. and Lyubeznik, G., On the vanishing of local cohomology modules, Invent. Math., 102 (1990), 7393.Google Scholar
[13] Kawasaki, K. -i., On the finiteness of Bass numbers of local cohomology modules, Proc. Amer. Math. Soc. (to appear).Google Scholar
[14] Matsumura, H., Commutative Ring Theory, Cambridge Studies in Adv. in Math., 1986.Google Scholar
[15] Nagata, M., Local Rings, Interscience Tracts in Pure and Appl. Math. 13, Wiley, New York, 1962.Google Scholar
[16] Peskine, C. and Szpiro, L., Dimension Projective Finie et Cohomologie Locale, I.H.E.S., 42 (1973), 323395.Google Scholar
[17] Rotman, J., An Introduction to Homological Algebra, Academic Press, 1979.Google Scholar