Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T23:49:24.506Z Has data issue: false hasContentIssue false

Class numbers of quadratic forms over real quadratic fields

Published online by Cambridge University Press:  22 January 2016

Yoshiyuki Kitaoka*
Affiliation:
Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let k be an algebraic number field, let K be a Galois extension of k of finite degree, and let OK, Ok be the maximal orders of K, k, respectively. We consider the conjugate operation: for a given quadratic lattice M over OK equipped with a bilinear form B and for an automorphism σ ∈ G(K/k), we define a new quadratic lattice Mσ over OK. Here Mσ has the same underlying abelian group as M, but a new OK-action ; the new bilinear form Bσ on Mσ is defined by

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1977

References

[1] Eichler, M., Zur Zahlentheorie der Quaternionenalgebren, J. reine u. angew. Math., 195 (1956), 127151.Google Scholar
[2] Kitaoka, Y., Quaternary even positive definite quadratic forms of prime discriminant, Nagoya Math. J., 52 (1973), 147161.Google Scholar
[3] Maass, H., Modulformen und quadratische Formen über dem quadratischen Zahlkörper , Math. Ann. 118 (1941), 6584.Google Scholar
[4] O’Meara, O. T., Introduction to quadratic forms, Springer-Verlag, 1963.CrossRefGoogle Scholar
[5] Peters, M., Ternäre und quaternare quadratische Formen und Quaternionenalgebren, Acta Arith., 15 (1969), 329365.CrossRefGoogle Scholar
[6] Ponomarev, P., Arithmetic of quaternary quadratic form, Acta Arith., 29 (1976), 148.Google Scholar