No CrossRef data available.
Article contents
Circular Slit Disk with Infinite Radius
Published online by Cambridge University Press: 22 January 2016
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let W be a plane domain such that ∞∉W. Given a point a∉W and a boundary component C of W, consider the family consisting of all the functions f satisfying the following conditions: f is regular and univalent in W, f(a) = 0, f′(a) = l, and the image f(C) of C under f is the outer boundary component of the image domain f(W). Set
and
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1966
References
[2]
Constantinescu, C.
Ideale Randkomponenten einer Riemannschen Fläche. Revue Math. Pur. et Appl. 4 (1959), 43–76.Google Scholar
[3]
Grötzsch, H.
Über die Verzerrung bei schlichter konformer Abbildung mehrfach zusam-menhängender schlichter Bereiche. Sächsiche Akad. Wiss., Berichte, 81 (1929), 38–47.Google Scholar
[4]
Grötzsch, H.
Eine Bemerkung zum Koebeschen Kreisnormierungsprinzip. Ibid. 87 (1935), 319–324.Google Scholar
[6]
Oikawa, K.
Minimal slit regions and linear operator method. Kōdai Math. Sem. Rep. 17 (1965), 187–190.Google Scholar
[7]
Reich, E. and Warschawski, S.E.
On canonical conformal maps of regions of arbitrary connectivity. Pacific J. 10 (1960), 965–985.Google Scholar
[8]
Reich, E. and Warschawski, , Canonical conformal maps onto a circular slit annulus. Scripta Math. 25 (1960), 137–146.Google Scholar
[9]
Sario, L.
A linear operator method on arbitrary Riemann surfaces. Trans. Amer. Math. Soc. 72 (1952), 281–295.CrossRefGoogle Scholar
[10]
Sario, L.
Strong and weak boundary components. J. Anal. Math. 5 (1956/57), 389–398.Google Scholar
[11]
Suita, N.
Minimal slit domains and minimal sets. Kōdai Math. Sem. Rep. 17 (1965), 166–186.Google Scholar
[12]
Teichmüller, O.
Untersuchungen über konforme und quasikonforme Abbildung. Deutsche Math., 3 (1938), 621–678.Google Scholar
You have
Access