Published online by Cambridge University Press: 22 January 2016
The purpose of this paper is to characterize by means of simple quadratic forms the set of rational primes that are decomposed completely in a non-abelian central extension which is abelian over a quadratic field. More precisely, let L = Q be a bicyclic biquadratic field, and let K = Q. Denote by the ray class field mod m of K in narrow sense for a large rational integer m. Let be the maximal abelian extension over Q contained in and be the maximal extension contained in such that Gal(/L) is contained in the center of Gal(/Q). Then we shall show in Theorem 2.1 that any rational prime p not dividing d1d2m is decomposed completely in /Q if and only if p is representable by rational integers x and y such that x ≡ 1 and y ≡ 0 mod m as follows
where a, b, c are rational integers such that b2 − 4ac is equal to the discriminant of K and (a) is a norm of a representative of the ray class group of K mod m.
Moreover is decomposed completely in if and only if .