Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T23:39:22.576Z Has data issue: false hasContentIssue false

Carleson measures for weighted Hardy-sobolev spaces

Published online by Cambridge University Press:  11 January 2016

Carme Cascante
Affiliation:
Departament de Matemàtica Aplicada i Anàlisi Facultat de Matemàtiques Universitat de BarcelonaGran Via 585, 08071Barcelona [email protected]
Joaquin M. Ortega
Affiliation:
Departament de Matemàtica Aplicada i Anàlisi Facultat de Matemàtiques Universitat de BarcelonaGran Via 585, 08071Barcelona [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We obtain characterizations of positive Borel measures µ on Bn so that some weighted Hardy-Sobolev are imbedded in Lp(dµ), where w is an Ap weight in the unit sphere of Cn.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2007

References

[Ad] Adams, D. R., Weighted nonlinear potential theory, Trans. Amer. Math. Soc., 297 (1986), 7394.Google Scholar
[AdHe] Adams, D. R. and Hedberg, L. I., Function Spaces and Potential Theory, Springer-Verlag Berlin-Heidelberg-New York, 1996.Google Scholar
[Ah] Ahern, P., Exceptional sets for holomorphic Sobolev functions, Michigan Math. J., 35 (1988), 2941.Google Scholar
[AhCo] Ahern, P. and Cohn, W. S., Exceptional sets for Hardy-Sobolev spaces, Indiana Math. J., 39 (1989), 417451.Google Scholar
[AhBrCa] Ahern, P., Bruna, J. and Cascante, C., Hp-theory for generalized M-harmonicfunctions in the unit ball, Indiana Math. J., 45 (1996), 103135.Google Scholar
[BeLo] Berg, J. and Löfström, J., Interpolation Spaces, an Introduction, Springer-Verlag Berlin, 1976.Google Scholar
[CaOr1] Cascante, C. and Ortega, J. M., Tangential-exceptional sets for Hardy-Sobolev spaces, Illinois J. Math., 39 (1995), 6885.Google Scholar
[CaOr2] Cascante, C. and Ortega, J. M., Carleson measures on spaces of Hardy-Sobolev type, Canadian J. Math., 47 (1995), 11771200.CrossRefGoogle Scholar
[CohVe1] Cohn, W. S. and Verbitsky, I. E., Trace inequalities for Hardy-Sobolev functions in the unit ball of Cn , Indiana Univ. Math. J., 43 (1994), 10791097.CrossRefGoogle Scholar
[CohVe2] Cohn, W. S. and Verbitsky, I. E., Non-linear potential theory on the ball, with applications to exceptional and boundary interpolation sets, Michigan Math. J., 42 (1995), 7997.Google Scholar
[CoiMeSt] Coifman, R. R., Meyer, Y. and Stein, E. M., Some new function spaces and their applications to harmonic analysis, Journal of Funct. Anal., 62 (1985), 304335.Google Scholar
[HeWo] Hedberg, L. I. and Wolff, Th. H., Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble), 33 (1983), 161187.Google Scholar
[KaKo] Kangy, H. and Koo, H., Two-weighted inequalities for the derivatives of holo-morphic functions and Carleson measures on the ball, Nagoya Math. J., 158 (2000), 107131.CrossRefGoogle Scholar
[KeSa] Kerman, R. and Sawyer, E. T., The trace inequality and eigenvalue estimates for Schrödinger operators, Ann. Inst. Fourier, 36 (1986), 207228.CrossRefGoogle Scholar
[Lu] Luecking, D. H., Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math., 34 (1985), 319336.CrossRefGoogle Scholar
[Ma] Maz’ya, V. G., Sobolev Spaces, Berlin: Springer, 1985.Google Scholar
[OF] Ortega, J. M. and Fabrega, J., Holomorphic Triebel-Lizorkin Spaces, J. Funct. Analysis, 151 (1997), 177212.CrossRefGoogle Scholar
[Pe] Peloso, M. M., Möbius invariant spaces on the unit ball, Michigan Math. J., 39 (1992), 509537.Google Scholar
[Ru] Rudin, W., Function Theory in the Unit Ball of Cn , New York: Springer, 1980.Google Scholar
[St2] Stein, E. M., Boundary behavior of holomorphic functions of several complex variables, Princeton University Press, 1972.Google Scholar
[StrTo] Strömberg, J.-O. and Torchinsky, A., Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer-Verlag, 1989.Google Scholar