Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T10:45:36.817Z Has data issue: false hasContentIssue false

Canonical Connections and Pontrjagin Classes

Published online by Cambridge University Press:  22 January 2016

Shoshichi Kobayashi*
Affiliation:
University of Washington
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the previous paper [7], we have studied the relationship between the Riemannian connection of an n-dimensional Riemannian space M imbedded into the (n + k)-dimensional Euclidean space Rn+k and the canonical connection in the bundle Pn, k = O(n + k)/{l} Х O(k) over the Grassmann manifold Mn, k = O(n + k)/O(n) Х O(k).

In the first half of the present paper, the relationship between the canonical connections in bundles and the invariant Riemannian connection on Mn, k will be discussed. We obtain the holonomy groups of these canonical connections.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1957

References

[1] Ambrose, W. and Singer, I. M., A theorem on holonomy, Trans. Amer. Math. Soc., 75 (1955),428443.Google Scholar
[2] Cartan, E., Sur une classe remarquable d’espaces de Riemann, Bull. Soc. Math. France, 54 (1926), 214268; 55 (1927),114134.Google Scholar
[3] Cartan, H., Notion d’algèbre differentiate etc., Colloque de topologie, Bruxelles (1950), 1527, 5771.Google Scholar
[4] Chern, S-S., Lecture notes in Princeton (1951).Google Scholar
[5] Chern, S-S., La géométrie des sous-variétés d’un espace euclidien à plusieurs dimensions, Enseignement math. (1955),2646.Google Scholar
[6] Ehresmann, C., Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie, Bruxelles (1950),2955.Google Scholar
[7] Kobayashi, S., Induced connections and imbedded Riemannian spaces, Nagoya Math. J., 10 (1956),1525.Google Scholar
[8] Kobayashi, S., Theory of connections (thesis), to appear.Google Scholar
[9] Littlewood, D. E., Theory of group characters, Oxford (1940).Google Scholar
[10] Nomizu, K., Invariant affine connections on homogeneous spaces, Amer. J. Math., 76 (1954),3365.Google Scholar
[11] Nomizu, K., Reduction theorem for connections and its application etc., Nagoya Math., J. 9 (1955),5766.Google Scholar
[12] Pontrjagin, L., Some topological invariants of closed Riemannian manifolds, Izvestiya Akad. Nauk SSSK, ser. Math., 13 (1949), 125162; Amer. Math. Soc. Trans., No. 49.Google Scholar
[13] Wen-Tsun, Wu, Sur les espaces fibres,Paris Hermann (1952).Google Scholar