Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T23:23:42.441Z Has data issue: false hasContentIssue false

The Brauer–Manin pairing, class field theory, and motivic homology

Published online by Cambridge University Press:  11 January 2016

Takao Yamazaki*
Affiliation:
Mathematical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a smooth proper variety over a p-adic field, its Brauer group and abelian fundamental group are related to higher Chow groups by the Brauer–Manin pairing and class field theory. We generalize this relation to smooth (possibly nonproper) varieties, using motivic homology and a variant of Wiesend’s ideal class group. Several examples are discussed.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2013

References

[1] Bloch, S., Algebraic K-theory and classfield theory for arithmetic surfaces, Ann. of Math. (2) 114 (1981), 229265. MR 0632840. DOI 10.2307/1971294.Google Scholar
[2] Bloch, S., On the Chow groups of certain rational surfaces, Ann. Sci. Éc. Norm. Supér. (4) 14 (1981), 4159. MR 0618730.Google Scholar
[3] Colliot-Thélène, J.-L., Hilbert’s theorem 90 for K2, with application to the Chow groups of rational surfaces, Invent. Math. 71 (1983), 120. MR 0688259. DOI 10. 1007/BF01393336.Google Scholar
[4] Colliot-Thélène, J.-L., “Cycles algébriques de torsion et K-théorie algébrique” in Arithmetic Algebraic Geometry (Trento, 1991), Lecture Notes in Math. 1553, Springer, Berlin, 1993, 149. MR 1338859.CrossRefGoogle Scholar
[5] Colliot-Thélène, J.-L., L’arithmétique du groupe de Chow des zéro-cycles, J. Théor. Nombres Bordeaux 7 (1995), 5173. MR 1413566.Google Scholar
[6] Colliot-Thélène, J.-L. and Saito, S., Zéro-cycles sur les variétés p-adiques et groupe de Brauer, Int. Math. Res. Not. IMRN 1996, no. 4, 151160. MR 1385140. DOI 10. 1155/S107379289600013X.Google Scholar
[7] Colliot-Thélène, J.-L. and Sansuc, J.-J., “La descente sur les variétés rationnelles” in Journées de Géometrie Algébrique d’Angers, Juillet 1979, Sijthoff and Noordhoff, Alphen aan den Rijn, 1980, 223237. MR 0605344.Google Scholar
[8] Colliot-Thélène, J.-L. and Sansuc, J.-J., On the Chow groups of certain rational surfaces: A sequel to a paper of S. Bloch, Duke Math. J. 48 (1981), 421447. MR 0620258.Google Scholar
[9] Coray, D. E. and Tsfasman, M. A., Arithmetic on singular del Pezzo surfaces, Proc. Lond. Math. Soc. (3) 57 (1988), 2587. MR 0940430. DOI 10.1112/plms/s3-57.1.25.Google Scholar
[10] Dalawat, C. S., Le groupe de Chow d’une surface de Chätelet sur un corps local, Indag. Math. (N.S.) 11 (2000), 173185. MR 1813158. DOI 10.1016/S0019-3577(00)89075-8.Google Scholar
[11] Friedlander, E. M. and Voevodsky, V., “Bivariant cycle cohomology” in Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud. 143, Princeton University Press, Princeton, 2000, 138187. MR 1764201.Google Scholar
[12] Geisser, T., Arithmetic homology and an integral version of Kato’s conjecture, J. Reine Angew. Math. 644 (2010), 122. MR 2671773. DOI 10.1515/CRELLE.2010.050.CrossRefGoogle Scholar
[13] Geisser, T., On Suslin’s singular homology and cohomology, Doc. Math. 2010, Extra Vol., Andrei A. Suslin Sixtieth Birthday, 223249. MR 2804255.Google Scholar
[14] Geisser, T. and Levine, M., The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine Angew. Math. 530 (2001), 55103. MR 1807268. DOI 10.1515/crll.2001.006.Google Scholar
[15] Gille, P. and Szamuely, T., Central Simple Algebras and Galois Cohomology, Cambridge Stud. Adv. Math. 101. Cambridge University Press, Cambridge, 2006. MR 2266528. DOI 10.1017/CBO9780511607219.Google Scholar
[16] Hiranouchi, T., Class field theory for open curves over p-adic fields, Math. Z. 266 (2010), 107113. MR 2670674. DOI 10.1007/s00209-009-0556-1.Google Scholar
[17] Jannsen, U., Weights in arithmetic geometry, Jpn. J. Math. 5 (2010), no. 1, 73102. MR 2609323. DOI 10.1007/s11537-010-0947-4.Google Scholar
[18] Jannsen, U. and Saito, S., Kato homology of arithmetic schemes and higher class field theory over local fields, Doc. Math. 2003, Extra Vol., Kazuya Kato’s Fiftieth Birthday, 479538. MR 2046606.Google Scholar
[19] Jannsen, U. and Saito, S., Bertini theorems and Lefschetz pencils over discrete valuation rings, with applications to higher class field theory, J. Algebraic Geom. 21 (2012), 683705. MR 2957692.CrossRefGoogle Scholar
[20] Kahn, B., Relatively unramified elements in cycle modules, J. K-Theory 7 (2011), 409427. MR 2811710. DOI 10.1017/is011003002jkt147.CrossRefGoogle Scholar
[21] Kato, K. and Saito, S., Unramified class field theory of arithmetical surfaces, Ann. of Math. (2) 118 (1983), 241275. MR 0717824. DOI 10.2307/2007029.Google Scholar
[22] Lichtenbaum, S., Duality theorems for curves over p-adic fields, Invent. Math. 7 (1969), 120136. MR 0242831.Google Scholar
[23] Manin, Y. I., “Le groupe de Brauer-Grothendieck en géométrie diophantienne” in Actes du Congrès International des Mathématiciens (Nice, 1970), I, Gauthier-Villars, Paris, 1971, 401411. MR 0427322.Google Scholar
[24] Manin, Y. I., Cubic Forms: Algebra, Geometry, Arithmetic, North-Holland Math. Libr. 4, North-Holland, Amsterdam, 1974. MR 0460349.Google Scholar
[25] Mattuck, A., Abelian varieties over p-adic ground fields, Ann. of Math (2) 62 (1955), 92119. MR 0071116.Google Scholar
[26] Mazza, C., Voevodsky, V., and Weibel, C., Lecture Notes on Motivic Cohomology, Clay Math. Monogr. 2, Amer. Math. Soc., Providence, 2006. MR 2242284.Google Scholar
[27] Merkurjev, A. S., On the torsion in K 2 of local fields, Ann. of Math. (2) 118 (1983), 375381. MR 0717828. DOI 10.2307/2007033.Google Scholar
[28] Parimala, R. and Suresh, V., Zero-cycles on quadric fibrations: Finiteness theorems and the cycle map, Invent. Math. 122 (1995), 83117. MR 1354955. DOI 10.1007/BF01231440.Google Scholar
[29] Saito, S., Class field theory for curves over local fields, J. Number Theory 21 (1985), 4480. MR 0804915. DOI 10.1016/0022-314X(85)90011-3.CrossRefGoogle Scholar
[30] Saito, S., On the cycle map for torsion algebraic cycles of codimension two, Invent. Math. 106 (1991), 443460. MR 1134479. DOI 10.1007/BF01243920.Google Scholar
[31] Saito, S. and Sato, K., Zero-cycles on varieties over p-adic fields and Brauer groups, preprint, arXiv:0906.2273 [math.AG]Google Scholar
[32] Sato, K., Non-divisible cycles on surfaces over local fields, J. Number Theory 114 (2005), 272297. MR 2167971. DOI 10.1016/j.jnt.2004.08.015.Google Scholar
[33] Scheiderer, C. and Hamel, J. van, Cohomology of tori over p-adic curves, Math. Ann. 326 (2003), 155183. MR 1981617. DOI 10.1007/s00208-003-0416-y.Google Scholar
[34] Schmidt, A., Singular homology of arithmetic schemes, Algebra Number Theory 1 (2007), 183222. MR 2361940. DOI 10.2140/ant.2007.1.183.Google Scholar
[35] Schmidt, A. and Spieß, M., Singular homology and class field theory of varieties over finite fields, J. Reine Angew. Math. 527 (2000), 1336. MR 1794016. DOI 10.1515/crll.2000.079.Google Scholar
[36] Serre, J.-P., Groupes algébriques et corps de classes, Hermann, Paris, 1959. MR 0103191.Google Scholar
[37] Suslin, A. and Joukhovitski, S., Norm varieties, J. Pure Appl. Algebra 206 (2006), 245276. MR 2220090. DOI 10.1016/j.jpaa.2005.12.012.Google Scholar
[38] Suslin, A. and Voevodsky, V., Singular homology of abstract algebraic varieties, Invent. Math. 123 (1996), 6194. MR 1376246. DOI 10.1007/BF01232367.Google Scholar
[39] Suslin, A. and Voevodsky, V., “Bloch-Kato conjecture and motivic cohomology with finite coefficients” in The Arithmetic and Geometry of Algebraic Cycles (Banff, 1998), NATO Sci. Ser. C Math. Phys. Sci. 548, Kluwer, Dordrecht, 2000, 117189. MR 1744945.Google Scholar
[40] Szamuely, T., Sur l’application de réciprocité pour une surface fibrée en coniques définie sur un corps local, J. K-Theory 18 (1999), 173179. MR 1711708. DOI 10. 1023/A:1007880216662.Google Scholar
[41] Szamuely, T., Sur la théorie des corps de classes pour les variétés sur les corps p-adiques, J. Reine Angew. Math. 525 (2000), 183212. MR 1780431. DOI 10.1515/crll.2000. 066.Google Scholar
[42] Voevodsky, V., “Triangulated categories of motives over a field” in Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud. 143, Princeton University Press, Princeton, 2000, 188238. MR 1764202.Google Scholar
[43] Voevodsky, V., On motivic cohomology with Z/l-coefficients, Ann. of Math. (2) 174 (2011), 401438. MR 2811603. DOI 10.4007/annals.2011.174.1.11.Google Scholar
[44] Weibel, C., The norm residue isomorphism theorem, J. Topol. 2 (2009), 346372. MR 2529300. DOI 10.1112/jtopol/jtp013.Google Scholar
[45] Wiesend, G., Class field theory for arithmetic schemes, Math. Z. 256 (2007), 717729. MR 2308885. DOI 10.1007/s00209-006-0095-y.Google Scholar
[46] Yamazaki, T., On Chow and Brauer groups of a product of Mumford curves, Math. Ann. 333 (2005), 549567. MR 2198799. DOI 10.1007/s00208-005-0675-x.CrossRefGoogle Scholar
[47] Yamazaki, T., Class field theory for a product of curves over a local field, Math. Z. 261 (2009), 109121. MR 2452639. DOI 10.1007/s00209-008-0315-8.Google Scholar