Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:51:26.714Z Has data issue: false hasContentIssue false

Boundary Isomorphism between Dirichlet Finite Solutions of Δu = Pu and Harmonic Functions

Published online by Cambridge University Press:  22 January 2016

Ivan J. Singer*
Affiliation:
University of Miami
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Consider an open Riemann surface R and a density P(z)dxdy (z = x + iy), well defined on R. As was shown by Myrberg in [3], if P ≢ 0 is a nonnegative α-Hölder continuous density on R (0 < α ≤ 1) then there exists the Green’s functions of the differential equation

p>on R, where Δ means the Laplace operator. As a consequence, there always exists a nontrivial solution on R.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1973

References

[1] Glasner, M. & Katz, R., On the behavior of solutions of Δu=Pu at the Royden boundary, J. D’Analyse Math., 22 (1969), 343354.CrossRefGoogle Scholar
[2] Markushevich, A.I., Theory of functions of a complex variable, Prentice-Hall, 1965.Google Scholar
[3] Myrberg, L., Über die Existenz der Greenschen Funktion der Gleichung Δur=c(P)u auf Riemannschen Flächen, Ann. Acad. Sci. Fenn. Ser. A. I., 170 (1954), 6 pp.Google Scholar
[4] Nakai, M., The space of Dirichlet-finite solutions of the equation Δu = Pu on a Riemann surface, Nagoya Math. J., 18 (1961), 111131.Google Scholar
[5] Nakai, M., Dirichlet finite solutions of Δu=Pu on open Riemann surfaces, Kōdai Math. Sem. Rep., 23 (1971), 385397.Google Scholar
[6] Ozawa, M., Classification of Riemann surfaces, Kōdai Math. Sem. Rep., 4 (1952), 6376.Google Scholar
[7] Royden, H.L., The equation Δu=Pu, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A. I., 271 (1959).Google Scholar
[8] Sario, L. & Nakai, M., Classification Theory of Riemann Surfaces, Springer, 1970, 446 pp.Google Scholar
[9] Singer, I.J., Dirichlet finite solutions of Δu=Pu, Proc. Amer. Math. Soc. (to appear).Google Scholar
[10] Virtanen, K.I., Über die Existenz von beschrankten harmonischen Funktionen auf offenen Riemannschen Flächen, Ann. Acad. Sci. Fenn. Ser. A. I., 75 (1950).Google Scholar
[11] Yosida, K., Functional Analysis, Springer, 1965, 458 pp.Google Scholar