Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T09:56:55.411Z Has data issue: false hasContentIssue false

Boundary Behaviour of Functions With Hadamard Gaps

Published online by Cambridge University Press:  22 January 2016

K. G. Binmore
Affiliation:
London School of Economics, Math. Dept., S.U.N.Y.A.,
R. Hornblower
Affiliation:
London School of Economics, Math. Dept., S.U.N.Y.A.,
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we discuss the boundary properties of a function f which is analytic in the open unit disc Δ and has Hadamard gaps—i.e.

(1)

where

. (2)

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1972

References

[1] Anderson, J. M., ‘Boundary properties of analytic functions with gap power series’, Quart. J. Math. (2) (Oxford), 21 (1970), 247256.Google Scholar
[2] Bari, N., ‘A Treatise on Trigonometric Series, Vol. II’, New York (1964).Google Scholar
[3] Binmore, K. G., ‘Analytic functions with Hadamard gaps’, Bull. London Math. Soc. 1 (1969), 211217.CrossRefGoogle Scholar
[4] Collingwood, E. F. and Lohwater, A. J., ‘The Theory of Cluster Sets’, C.U.P. (1966).Google Scholar
[5] Fuchs, W. H. J., ‘On the zeros of a power series with Hadamard gaps’, Nagoya Math. J., 29 (1967), 167174.CrossRefGoogle Scholar
[6] Hornblower, R., ‘A growth condition for the MacLane class A Proc. Lond. Math. Soc. (3) 23 (1971), 371384.CrossRefGoogle Scholar
[7] Kahane, J.-P. and M. and Weiss, G., ‘On lacunary power series’, Ark. Math., 5 (1963), 126.CrossRefGoogle Scholar
[8] Maclane, G. R., ‘Asymptotic Values of Holomorphic Functions’, Rice University Studies, Vol. 49, No. 1, (1963).Google Scholar
[9] Offord, A. C., ‘The distribution of the zeros of power series whose coefficients are independent random variables’, Indian J. Math., 9 (1967), 175196.Google Scholar
[10] Ostrowski, A., ‘Uber eine Eigenschaft gewisser Potenzreihen mit unendlich vielen verschiedenen Koeffizienten’, Berlin Ber. 34 (1921), 557565.Google Scholar
[11] Weiss, M., ‘The law of the iterated logarithm for lacunary trigonometric series’, Trans. Amer. Math. Soc., 91 (1959), 444469.Google Scholar
[12] Weiss, M., ‘Concerning a theorem of Paley on lacunary power series’, Acta Math. 102 (1959), 225238.CrossRefGoogle Scholar
[13] M. and Weiss, G., ‘On the Picard property of lacunary power series’, Studia Math. (1962–63), 221245.Google Scholar