Article contents
Birational automorphism groups and differential equations
Published online by Cambridge University Press: 22 January 2016
Extract
Painlevé studied the differential equations y″ = R(y′ y, x) without moving critical point, where R is a rational function of y′ y, x. Most of them are integrated by the so far known functions. There are 6 equations called Painlevé’s equations which seem to be irreducible or seem to define new transcendental functions. The simplest one among them is y″ = 6y2 + x. Painlevé declared on Comptes Rendus in 1902-03 that y″ = 6y2 + x is irreducible. It seems that R. Liouville pointed out an error in his argument. In fact there are discussions on this subject between Painlevé and Liouville on Comptes Rendus in 1902-03. In 1915 J. Drach published a new proof of the irreducibility of the differential equation y″ = 6y2 + x. The both proofs depend on the differential Galois theory developed by Drach. But the differential Galois theory of Drach contains errors and gaps and it is not easy to understand their proofs. One of our contemporaries writes in his book: the differential equation y″ = 6y2 + x seems to be irreducible dans un sens que on ne peut pas songer à préciser. This opinion illustrates well the general attitude of the nowadays mathematicians toward the irreducibility of the differential equation y″ = 6y2 + x. Therefore the irreducibility of the differential equation y″ = 6y2 + x remains to be proved. We consider that to give a rigorous proof of the irreducibility of the differential equation y″ = 6y2 + x is one of the most important problem in the theory of differential equations.
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1990
References
- 23
- Cited by