Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T22:34:31.760Z Has data issue: false hasContentIssue false

Bernsteins theorem for completely excessive measures

Published online by Cambridge University Press:  22 January 2016

Hedi Ben Saad
Affiliation:
Fac. des Sciences de Tunis Dépt. de Mathématiques, 1060 Tunis-Belvedère, Tunisie
Klaus Janßen
Affiliation:
Mathematisches Institut der Universität Düsseldorf, Universitätsstr. 1, Düsseldorf
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bernstein’s theorem states that the following properties are equivalent for a function ψ:]0, ∞ [→ R (which then is called completely monotone):

moreover, the measure σ in iii) is uniquely determined.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1990

References

[1] Ben Saad, H., Janßen, K., A characterization of parabolic potential theory, Math. Ann., 272 (1985), 281289.CrossRefGoogle Scholar
[2] Berg, C., Christensen, J. P. R., Ressel, P., Harmonic analysis on semigroups, New York-Berlin-Heidelberg-Tokyo, Springer, 1984.CrossRefGoogle Scholar
[3] Berg, C., Forst, G., Potential theory on locally compact abelian groups, Berlin-Heidelberg-New York, Springer, 1975.CrossRefGoogle Scholar
[4] Beznea, L., Ultrapotentials and positive eigenfunctions for an absolutely continuous resolvent of kernels, Nagoya Math. J., 112 (1988), 125142.CrossRefGoogle Scholar
[5] Boboc, N., Bucur, G., Cornea, A., Order and convexity in potential theory, Lecture notes in math., 853, Berlin-Heidelberg-New York, Springer, 1981.CrossRefGoogle Scholar
[6] Dellacherie, C., Meyer, P. A., Probabilités et potentiel, Chap. I à IV. Paris, Hermann, 1975.Google Scholar
[7] Dellacherie, C., Meyer, P. A., Probabilités et potentiel, Chap. XII à XVI. Paris, Hermann, 1987.Google Scholar
[8] Getoor, R. K., On the construction of kernels, Séminaire de Prob. de Strasbourg IX, 443463, Lecture notes in math., 465. Berlin-Heidelberg-New York, Springer, 1975.Google Scholar
[9] Itô, M., Positive eigen elements for an infinitesimal generator of a diffusion semigroup and their integral representations, Potential theory Copenhagen 1979, 163184. Lecture notes in math., 787, Berlin-Heidelberg-New York, Springer, 1980.Google Scholar
[10] Itô, M., Suzuki, N., Completely superharmonic measures for the infinitesimal generator A of a diffusion semigroup and positive eigen elements of A, Nagoya Math. J., 83 (1981), 53106.CrossRefGoogle Scholar
[11] Janßen, K., Representation of excessive measures, Seminar on stochastic processes 1986, 85105. Progress in probability and statistics, vol. 13. Boston-Basel-Stuttgart, Birkhäuser, 1987.Google Scholar