Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T08:10:19.093Z Has data issue: false hasContentIssue false

Bergman completeness of hyperconvex manifolds

Published online by Cambridge University Press:  22 January 2016

Bo-Yong Chen*
Affiliation:
Department of Mathematics, Tongji University, Shanghai 200092, P. R. China, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We proved that any hyperconvex manifold has a complete Bergman metric.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2004

References

[1] Blocki, Z., Estimates for the complex Monge-Ampere operator, Bull. Pol. Acad. Sci., 41 (1993), 151157.Google Scholar
[2] Blocki, Z. and Pflug, P., Hyperconvexity and Bergman completeness, Nagoya Math. J., 151 (1998), 221225.CrossRefGoogle Scholar
[3] Chen, B. Y., Completeness of the Bergman metric on non-smooth pseudoconvex domains, Ann. Pol. Math., LXXI (1999), 241251.CrossRefGoogle Scholar
[4] Chen, B. Y. and Zhang, J. H., The Bergman metric on a Stein manifold with a bounded plurisubharmonic function, Trans. Amer. Math. Soc., 354 (2002), 29973009.CrossRefGoogle Scholar
[5] Demailly, J. P., Estimations L2 pour l’opérateur d’un fibré vectoriel holomorphe semi-positiv au dessus d’une variété kählérienne complète, Ann. Sci. Ec. Norm. Sup., 15 (1982), 457511.CrossRefGoogle Scholar
[6] Demailly, J. P., Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z., 194 (1987), 519564.CrossRefGoogle Scholar
[7] Greene, R. E. and Wu, H., Function theory on manifolds which possess a pole, Lecture Notes in Mathematics, 699, Springer-Verlag 1979.CrossRefGoogle Scholar
[8] Herbort, G., The Bergman metric on hyperconvex domains, Math. Z., 232 (1999), 183196.CrossRefGoogle Scholar
[9] Jarnicki, M. and Pflug, P., Bergman completeness of complete circular domains, Ann. Pol. Math., 50 (1989), 219222.CrossRefGoogle Scholar
[10] Kobayashi, S., Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267290.CrossRefGoogle Scholar
[11] Kobayashi, S., Hyperbolic Complex spaces, A Series of Comprehensive Studies in Mathematics, 318, Springer-Verlag 1998.Google Scholar
[12] Ohsawa, T., Boundary behavior of the Bergman kernel function on pseudoconvex domains, Publ. RIMS, Kyoto Univ., 20 (1984), 897902.CrossRefGoogle Scholar
[13] Ohsawa, T. and Sibony, N., Bounded p.s.h. functions and pseudoconvexity in Kähler manifolds, Nagoya Math. J., 149 (1998), 18.CrossRefGoogle Scholar
[14] Richberg, R., Steige streng pseudoconvexe Funktionen, Math. Ann., 175 (1968), 257286.Google Scholar