Published online by Cambridge University Press: 22 January 2016
Consider a nonnegative Hölder continuous 2-form P(z)dxdy on a hyperbolic Riemann surface R (z = x + iy). We denote by PB(R) the Banach space of solutions of the equation Δu = Pu on R with finite supremum norms. We are interested in the question how the Banach space structure of PB(R) depends on P. Precisely we consider two such 2-forms P and Q on R and compare PB(R) and QB(R). If there exists a bijective linear isometry T of PB(R) to QB(R), then we say that PB(R) and QB(R) are isomorphic.