Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T23:21:30.706Z Has data issue: false hasContentIssue false

Bäcklund transformations of the first kind associated with Monge-Ampère’s equations

Published online by Cambridge University Press:  22 January 2016

Michihiko Matsuda*
Affiliation:
Department of Mathematics, Osaka University Toyonaka, Osaka, 560, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Due to Clairin and Goursat, a Bäcklund transformation of the first kind can be associated with Monge-Ampère’s equation. We shall consider Monge-Ampère’s equation of the form s + f(x, y, z, p, q) + g(x, y, z, p, q) t = 0, where p = ∂z/∂x, q = ∂z/∂y, s = 2z/∂x∂y, t = ∂2z/∂y2. The following theorems will be obtained:

1. The transformed equation takes on the same form s′ + f′ + g′t′ = 0 if and only if the given equation can be transformed to a Teixeira equation s + L(x, y, z, q)t + M(x, y, z, q)p + N(x, y, z, q) = 0 by a contact transformation.

2. Teixeira equation s + tL + pM + N = 0 is solved by integrable systems of order n if and only if the transformed equation is solved by integrable systems of order n — 1.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1973

References

[1] Cartan, E., Sur l’intégration des systèmes d’équations aux différentielles totales, Ann. Sci. Ecole Norm. Sup., 18 (1901), 241311.Google Scholar
[2] Cartan, E., Les systèmes différentiels extérieurs et leurs applications géométriques, Hermann, Paris, 1946.Google Scholar
[3] Clairin, J., Sur les transformations de Bäcklund, Ann. Sci. Ecole Norm. Sup., 19 (Suppl.) (1902), 363.CrossRefGoogle Scholar
[4] Forsyth, A. R., Theory of differential equations, Part I, Exact equations and Pfaff’s problem, Cambridge Univ. Press, London, 1890.Google Scholar
[5] Goursat, E., Le problème de Bäcklund, Memor. Sci. Math., fasc. VI, Gauthier-Villars, Paris, 1925.Google Scholar
[6] Lie, S., Theorie der Transformationsgruppen, II, Teubner, Leipzig, 1890.Google Scholar
[7] Matsuda, M., Two methods of integrating Monge-Ampère’s equations, Trans. Amer. Math. Soc., 150 (1970), 327343.Google Scholar
[8] Matsuda, M., Two methods of integrating Monge-Ampère’s equations. II, Trans. Amer. Math. Soc., 166 (1972), 371386.Google Scholar
[9] Matsuda, M., Integration of equations of Imschenetsky type by integrable systems, Proc. Japan Acad., 47 (Suppl. II) (1971), 965969.CrossRefGoogle Scholar
[10] Matsuda, M., Reduction of Monge-Ampère’s equations by Imschenetsky transformations, J. Math. Soc. Japan, 25 (1973), 4370.Google Scholar