Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T20:07:57.236Z Has data issue: false hasContentIssue false

An Extension of Poincaré Formula in Integral Geometry

Published online by Cambridge University Press:  22 January 2016

Minoru Kurita*
Affiliation:
Mathematical Institute, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A curve c2 of finite length L2 moves on a euclidean plane. Let the number of points of intersection of c2 with the fixed, curve C1 of length Ls1 be n, and the element of kinematic measure of the position of c2 be dK.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1951

References

[1] Santalô, A., Integralgeomatrie 5. (Actualités scientifiques et industrielles 1935).Google Scholar
[2] Blaschke, W., Vorlesungen über Integralgeometrie. zweites Heft (1937).Google Scholar
[3] Cartan, E., La théorie des groupes finis et continus et la géométrie différentielles. (1937).Google Scholar
[4] Chern, S. S., On integral geometry in Klein spaces. (Annals of mathematics. Vol. 43, 1942).Google Scholar