Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T23:53:57.539Z Has data issue: false hasContentIssue false

An explicit formula for the Fourier coefficients of Siegel-Eisenstein series of degree 3

Published online by Cambridge University Press:  22 January 2016

Hidenori Katsurada*
Affiliation:
Muroran Institute of Technology, 27-1 Mizumoto Muroran 050, Japan, [email protected]
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using an induction formula of local densities by Kitaoka, we give an explicit formula for the Fourier coefficients of Siegel Eisenstein series of degree

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1997

References

[Ka1] Katsurada, H., A certain formal power series of several variables attached to local densities of quadratic forms I, J. Number Theory, 51 (1995), 169209.CrossRefGoogle Scholar
[Ka2] Katsurada, H., A certain formal power series of several variables attached to local densities of quadratic forms II, Ser. A, Proc. Japan Acad., 70 (1994), 208211.Google Scholar
[Ki1] Kitaoka, Y., A note on local densities of quadratic forms, Nagoya Math. J., 92 (1983), 145152.Google Scholar
[Ki2] Kitaoka, Y., Fourier coefficients of Eisenstein series of degree 3, Ser. A, Proc. Japan Acad., 60 (1984), 259261.Google Scholar
[Ki3] Kitaoka, Y., Dirichlet series in the theory of quadratic forms, Nagoya Math., 92 (1984), 7384.CrossRefGoogle Scholar
[Ki4] Kitaoka, Y., Arithmetic of quadartic forms, Cambridge. Tracts Math., 106 (1993), Cambridge Univ. Press, Cambridge.Google Scholar
[Ma1] Maaβ, H., Uber Fourierkoeffizienten der Eisensteinreihen zweiten Grades, Mat. Fys. Medd. Dan. Vid. Selsk., 34 (1964), 125.Google Scholar
[Ma2] Maaβ, H., Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades, ibid., 38 (1972), 113.Google Scholar
[Mi] Miyake, T., Modular forms, Springer-Verlag, Berlin Heiderberg, 1989.Google Scholar
[O-W] Ozeki, M., Washio, T., Explicit formulas for the Fourier coefficients of Eisenstein series of degree 3, J. reine angew. Math., 345 (1983), 148171.Google Scholar