Article contents
Algebraic singularities have maximal reductive automorphism groups
Published online by Cambridge University Press: 22 January 2016
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let X = On/i be an analytic singularity where ṫ is an ideal of the C-algebra On of germs of analytic functions on (Cn, 0). Let denote the maximal ideal of X and A = Aut X its group of automorphisms. An abstract subgroup equipped with the structure of an algebraic group is called algebraic subgroup of A if the natural representations of G on all “higher cotangent spaces” are rational. Let π be the representation of A on the first cotangent space and A1 = π(A).
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1989
References
[1]
Artin, M., Algebraic approximation of structures over complete local rings, Publ. Math. Inst. Hautes Etud. Sci., 36 (1969), 23–58.Google Scholar
[2]
Artin, M., Construction techniques for algebraic spaces, Actes Congrès Intern. Math. 1970, tome 1, pp. 419–423.Google Scholar
[3]
Becker, J., Denef, J. and Lipshitz, L., The approximation property for some 5- dimensional Henselian rings, Trans. Amer. Math. Soc., 276 (1983), 301–309.CrossRefGoogle Scholar
[4]
Bierstone, E. and Milman, P., Invariant solutions of analytic equations, Enseign. Math., 25 (1979), 115–130.Google Scholar
[5]
Bingener, J. and Flenner, H., Einige Beispiele nichtalgebraischer Singularitáten, J. Reine Angew. Math., 305 (1979), 182–194.Google Scholar
[6]
Gabriélov, A. M., Formal relations between analytic functions, Funct. Anal. Appl., 5 (1971), 318–319.Google Scholar
[7]
Hochschild, G. P., Basic theory of algebraic groups and Lie algebras, Springer, 1981.Google Scholar
[8]
Kaup, W., Einige Bemerkungen über Automorphismengruppen von Stellenringen, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber., 1967 (1968), 43–50.Google Scholar
[9]
Müller, G., Reduktive Automorphismengruppen analytischer C-Algebren, J. Reine Angew. Math., 364 (1986), 26–34.Google Scholar
[10]
Popescu, D., General Néron desingularization and approximation, Nagoya Math. J., 104 (1986), 85–115.Google Scholar
[11]
Rotthaus, C., On the approximation property of excellent rings, Invent. Math., 88 (1987), 39–63.CrossRefGoogle Scholar
[12]
Saito, K., Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math., 14 (1971), 123–142.Google Scholar
You have
Access
- 9
- Cited by