No CrossRef data available.
Article contents
BOTT MANIFOLDS WITH VANISHING FUTAKI INVARIANTS FOR ALL KAHLER CLASSES
Published online by Cambridge University Press: 24 February 2025
Abstract
We prove that the only Bott manifolds such that the Futaki invariant vanishes for any Kähler class are isomorphic to the products of the projective lines.
MSC classification
- Type
- Article
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal
References
Apostolov, V., Calderbank, D. M. J., Gauduchon, P. and Tønnesen-Friedman, C. W.,
Hamiltonian
$2$
-forms in Kähler geometry. III. Extremal metrics and stability
, Invent. Math. 173 (2008), 547–601.CrossRefGoogle Scholar

Aubin, T.,
Equations du type Monge-Ampère sur les variétés kählériennes compactes
, C. R. Acad. Sci. Paris. 283 (1976), 119–121.Google Scholar
Batyrev, V. V.,
On the classification of toric Fano 4-folds
, J. Math. Sci. 94 (1999), 1021–1050.CrossRefGoogle Scholar
Berman, R. and Berndtsson, B.,
Convexity of the
$K$
-energy on the space of Kähler metrics and uniqueness of extremal metrics
, J. Amer. Math. Soc. 30 (2017), 1165–1196.CrossRefGoogle Scholar

Bott, R. and Samelson, H.,
Applications of the theory of Morse to symmetric spaces
, J. Amer. Math. Soc. 80 (1958), 964–1029.CrossRefGoogle Scholar
Boyer, C. P., Calderbank, D. M. J. and Tønnesen-Friedman, C. W.,
The Kähler geometry of Bott manifolds
, Adv. Math. 350 (2019), 1–62.CrossRefGoogle Scholar
Buchstaber, V. M. and Panov, T. E., Toric topology, Mathematical Surveys and Monographs, 204, American Mathematical Society, Providence, RI, 2015.CrossRefGoogle Scholar
Calabi, E., “Extremal Kähler metrics” in Seminar on differential geometry, Annals of Mathematics Studies, 102, edited by Yau, S. T., Princeton University Press, Princeton, NJ, 1982, 259–290.Google Scholar
Calabi, E., “Extremal Kähler metrics II” in Differential geometry and complex analysis, (Chavel, I. and Farkas, H. M. eds.), Springer-Verlag, Berlin, 1985, 95–114.CrossRefGoogle Scholar
Chen, X. and Cheng, J.,
On the constant scalar curvature Kähler metrics (II)—Existence results
, J. Amer. Math. Soc. 34 (2021), 937–1009.CrossRefGoogle Scholar
Chen, X. and Tian, G.,
Geometry of Kähler metrics and foliations by holomorphic discs
, Publ. Math. Inst. Hautes Études Sci. 107 (2008), 1–107.CrossRefGoogle Scholar
Choi, S., Masuda, M. and Suh, D. Y.,
Quasitoric manifolds over an product of simplices
, Osaka J. Math. 47 (2010), 109–129.Google Scholar
Choi, S. and Suh, D. Y.,
Properties of Bott manifolds and cohomological rigidity
, Algebr. Geom. Topol. 11 (2011), 1053–1076.CrossRefGoogle Scholar
Cox, D. A., Little, J. B. and Schenck, H. K., Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, Providence, RI, 2011.CrossRefGoogle Scholar
Dervan, R. and Legendre, E.,
Valuative stability of polarised varieties
, Math. Ann. 385 (2023), 357–391.CrossRefGoogle Scholar
Donaldson, S. K.,
Scalar curvature and stability of toric varieties
, J. Differ. Geom. 62 (2002), 289–349.CrossRefGoogle Scholar
Fujita, K.,
Towards a criterion for slope stability of Fano manifolds along divisors
, Osaka J. Math. 52 (2015), 71–93.Google Scholar
Fujita, K. and Yotsutani, N.,
Strong Calabi dream Bott manifolds
, Ann Univ. Ferrara. 70 (2024), 607–630.CrossRefGoogle Scholar
Fulton, W., Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993.CrossRefGoogle Scholar
Futaki, A.,
An obstruction to the existence of Einstein Kähler metrics
, Invent. Math. 73 (1983), 437–443.CrossRefGoogle Scholar
Futaki, A.,
On compact Kähler manifold of constant scalar curvature
, Proc. Japan Acad. Ser. A 59 (1983), 401–402.CrossRefGoogle Scholar
Guan, D.,
Existence of extremal metrics on compact almost homogeneous Kähler manifolds with two ends
, Trans. Amer. Math. Soc. 347 (1995), 2255–2262.Google Scholar
Grossberg, M. and Karshon, Y.,
Bott towers, complete integrability, and the extended character of representations
, Duke Math. J. 76 (1994), 23–58.CrossRefGoogle Scholar
Gruber, P. M., Convex and discrete geometry, Grundlehren der mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 336, Springer, Berlin, 2007.Google Scholar
Hwang, A. D.,
On existence of Kähler metrics with constant scalar curvature
, Osaka J. Math. 31 (1994), 561–595.Google Scholar
Levine, M.,
A remark on extremal Kähler metrics
, J. Differ. Geom. 21 (1985), 73–77.CrossRefGoogle Scholar
Martinez-Garcia, J.,
Constant scalar curvature Kähler metrics on rational surfaces
, Math. Nachr. 294 (2021), 1547–1558.CrossRefGoogle Scholar
Masuda, M. and Panov, T. E.,
Semi-free circle actions, Bott towers, and quasitoric manifolds
, Math. Sb. 199 (2008), 95–122.CrossRefGoogle Scholar
Nitta, Y., Saito, S. and Yotsutani, N.,
Relative Ding and
$K$
-stability of toric Fano manifolds in low dimensions
, Eur. J. Math. 9 (2023), 29.CrossRefGoogle Scholar

Ono, H., Sano, Y. and Yotsutani, N.,
An example of an asymptotically Chow unstable manifold with constant scalar curvature
, Ann. Inst. Fourier (Grenoble). 62 (2012), 1265–1287.CrossRefGoogle Scholar
Ross, J. and Thomas, R.,
A study of the Hilbert-Mumford criterion for the stability of projective varieties
, J. Algebraic Geom. 16 (2007), 201–255.CrossRefGoogle Scholar
Sato, H.,
Studies on toric Fano varieties
, Tohoku Math. Publ. 23, (2002), 1–99.CrossRefGoogle Scholar
Song, J. and Weinkove, B.,
The degenerate J-flow and the Mabuchi energy on minimal surfaces of general type
, Univ. Iagel. Acta Math. 50 (2013), 89–106.Google Scholar
Wang, X.-J. and Zhou, B.,
On the existence and nonexistence of extremal metrics on toric Kähler surfaces
, Adv. Math. 226 (2011), 4429–4455.CrossRefGoogle Scholar
Yau, S.-T.,
On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation I
, Commun. Pure Appl. Math. 31 (1978), 339–411.CrossRefGoogle Scholar
Yotsutani, N. and Zhou, B.,
Relative algebro-geometric stabilities of toric manifolds
, Tohoku Math. J. 71 (2019), 495–524.CrossRefGoogle Scholar
Yotsutani, N. and Zhou, B.,
Corrigenda: Relative algebro-geometric stabilities of toric manifolds (Tohoku Math J. 71, (2019), 495–524)
, Tohoku Math. J. 75 (2023), 299–303.CrossRefGoogle Scholar