Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T07:11:31.276Z Has data issue: false hasContentIssue false

Influence of the carbon, nitrogen and phosphorus source on the solubilization of insoluble metal compounds by Aspergillus niger

Published online by Cambridge University Press:  01 September 1998

JOSEPHINE E. DIXON-HARDY
Affiliation:
Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, U.K. Present address: School of Biological Sciences, University of Surrey, Guildford GU2 5XH, U.K.
VICTOR I. KARAMUSHKA
Affiliation:
Institute of Biocolloid Chemistry, Academy of Sciences of the Ukraine, 85 Frunze Str., 254080 Kiev, Ukraine
TAMARA G. GRUZINA
Affiliation:
Institute of Biocolloid Chemistry, Academy of Sciences of the Ukraine, 85 Frunze Str., 254080 Kiev, Ukraine
GALINA N. NIKOVSKA
Affiliation:
Institute of Biocolloid Chemistry, Academy of Sciences of the Ukraine, 85 Frunze Str., 254080 Kiev, Ukraine
JACQUELINE A. SAYER
Affiliation:
Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, U.K.
GEOFFREY M. GADD
Affiliation:
Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, U.K.
Get access

Abstract

The effects of varying carbon (glucose), nitrogen ((NH4)2SO4, KNO3) and phosphate (KH2PO4) source on solubilization of insoluble Co3(PO4)2.8H2O, Zn3(PO4)2.2H2O and ZnO by the soil fungus Aspergillus niger were assessed. Solubilization activity was quantified by measuring the clear zones produced around colonies of A. niger growing on solidified mineral salts medium amended with the insoluble metal compounds. Effects of nutrient variation on solubilizing properties were compared using ratios of colony growth rate on the metal compounds (Rm) to control growth rate (Rc) and the rate of extension of the zone of solubilization (Rs) compared to the colony growth rate on the metal compound (Rm), i.e. Rm[ratio ]Rc and Rs[ratio ]Rm. Ratios of solubilization rate to growth rate (Rs[ratio ]Rm) on all the compounds decreased with decreasing glucose concentration; there was no solubilization of ZnO below 60 mm glucose and no solubilization of the metal phosphates below 6 mm glucose. Reducing the concentration of ammonium sulphate in the growth medium decreased Rs[ratio ]Rm but these values were increased when the nitrogen source was nitrate. Reducing the phosphate concentration increased solubilization of Co3(PO4)2 but reduced solubilization of Zn3(PO4)2. These findings demonstrate that manipulation of carbon, nitrogen and phosphate sources in the growth medium, and variation of the form of the nutrient source, can be used to alter the solubilizing ability of A. niger. Whilst, in the natural environment, this response to different nutrient sources allows optimal exploitation of resources, the potential to manipulate nutrients for maximum solubilizing ability may prove beneficial for the optimization of the solubilization of metal compounds with respect to the bioremediation of metal-contaminated wastes and polluted ecosystems. It could also prove useful in other biotechnological applications such as metal recycling and extraction of metals from low-grade ores.

Type
Research Article
Copyright
The British Mycological Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)