Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T06:48:53.525Z Has data issue: false hasContentIssue false

An integrated study of individualism in Lentinula edodes in nature and its implication for cultivation strategy

Published online by Cambridge University Press:  01 June 1999

S. W. CHIU
Affiliation:
Department of Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong S.A.R., China
Z. M. WANG
Affiliation:
Department of Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong S.A.R., China Laboratory of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei, China
W. T. CHIU
Affiliation:
Erickson Hall, Michigan State University, E. Lansing MI 48826, U.S.A.
F. C. LIN
Affiliation:
Laboratory of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei, China
DAVID MOORE
Affiliation:
School of Biological Sciences, University of Manchester, Manchester M13 9PT, U.K.
Get access

Abstract

A field study was carried out in a remote broadleaved Fagus longipetiolata forest in Shaanxi province, China to study the natural local distribution of Lentinula edodes. Following spatial mapping, 24 fruit bodies were collected for tissue isolation into axenic culture. 24 genets distributed on fallen tree trunks within a distance of 120 m were identified and clustered into 7 groups using the unweighted pair-group method algorithm using data based on colony morphologies, abilities to degrade aromatic poly-R478 dye, somatic incompatibility reaction patterns and DNA fingerprints. Among the parameters used, the somatic incompatibility reaction, a polygenic phenotype, was the most differentiating, identifying 22 incompatible classes. Two sets of fruit bodies of different genets were so close together that they would otherwise have been described as aggregate fruits of presumed identical origin. Eighteen genets found on the same 5.6 m long tree trunk divided roughly into two clusters, matching their spatial distribution, and a nearby branch bore another distinct cluster. More heterogeneity was encountered between isolates the greater the distance separating them on the original site. Genets on the same tree trunk showed more compatible somatic reactions among themselves, and their DNA fingerprints showed higher similarity. Nevertheless, considering the totality of phenotypic characters, each fruit body is a genet in L. edodes. Such features are concluded to result from a reproductive strategy which depends on basidiospore dispersal. Within each cluster of isolates from the collection site genets seemed to have arisen from multiple sib-mating events. Thus, a cluster may represent a lineage of L. edodes. Individualism in L. edodes is based on a strong somatic incompatibility system. Strong competition from contaminating individuals arriving as air-borne basidiospores could explain decreased and fluctuating crop yields which are now frequently observed in later flushes from the outdoor wood log cultivation system. Further, it would also explain why multispore spawn is not favoured in artificial cultivation of this economically important edible mushroom.

Type
Research Article
Copyright
© The British Mycological Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)