A cross-linked copolymer was designed and synthesized bythe imidation of poly(oxyethylene)-diamine and 4,4’-oxydiphthalic anhydride, and followed by a late-stage curing to generate the cross-linked gels. The copolymers consisting of crosslinking sites and multiple functionalities such aspoly(oxyethylene)-segments, amido-acids, imides, and amine termini, characterized by Fourier Transform Infrared Spectroscopy. After the self-curing at 80 °C, the gel-like material enabled to absorb liquid form of electrolytesin the medium of propylene carbonate(PC), dimethylformamide(DMF),and N-methyl-2-pyrrolidone(NMP).By using a field emission scanning electronic microscope, we observed a 3D interconnected nanochannel microstructure, within which, the liquid electrolytes were absorbed. When the novel polymer gel electrolyte (PGE) was fabricated into a dye-sensitized solar cell (DSSC), an extremely high photovoltaic performance was demonstrated. The PGE, absorbed 76.7 wt% of the liquid electrolyte (soaking in the PC solution) based on the polymer’s weight gave rise to a power conversion efficiency of 8.31%, superior to that (7.89%) of the DSSC with liquid electrolytes. It was further demonstrated that the cell had a long-term stabilityduring the test of 1000hat-rest at room temperature or only slightly decreasing in efficiency of 5%.This is the first time demonstration for a PGE exhibiting a higher performance than its liquid counterpart cell. The observation is ascribed to the suppression of the back electron transfer through the unique morphology of the polymer microstructures.