Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T18:51:33.787Z Has data issue: false hasContentIssue false

Zone Melting Recrystallization of InSb Films on Oxidized Si Wafers

Published online by Cambridge University Press:  22 February 2011

C.C. Wong
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
C.J. Keavney
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
H.A. Atwater
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
C.V. Thompson
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
H.I. Smith
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
Get access

Abstract

InSb thin films on oxidized Si wafers have been recrystallized using a strip heater to generate and scan a narrow molten zone across the film. Grains up to 3 × 10 mm have been produced. Crystallization proceeds in a faceted cellular fashion, the excess solute (Sb) being rejected into subboundaries which often lie along low-index crystallographic directions. A InSb-Sb eutectic structure forms at the subboundaries. The width of the single-crystal InSb between subboundaries is approximately 75 μm. The techniques of planar constriction and subboundary entrainment have been extended to InSb for the selection of single grains and the orelocation of subboundaries. This technology of producing InSb thin films on oxidized Si substrates max, be extendable to other III-V materials, and could lead to novel device structures through the integration of Si and III-V compound devices on the same substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tsaur, B.-Y., Geis, M.W., Fan, J.C.C., Silversmith, D.J. and Mountain, R.W., Appl. Phys. Lett. 39, 909 (1981).Google Scholar
2.Geis, M.W., Smith, H.I., Tsaur, B.-Y., Fan, J.C.C., Maby, E.W. and Antoniadis, D.A., Appl. Phys. Lett. 40, 158 (1982).Google Scholar
3.Geis, M.W., Smith, H.I., Tsaur, B.-Y., Fan, J.C.C., Silversmith, D.J. and Mountain, R.W., J. Electrochem. Soc. 12, 2812 (1982).Google Scholar
4.Atwater, H.A., Smith, H.I. and Geis, M.W., Appl. Phys. Lett. 41, 747 (1982).Google Scholar
5.Atwater, H.A., Thompson, C.V., Smith, H.I. and Geis, M.W., to be published, Appl. Phys. Lett., Dec. 1983.Google Scholar
6.Geis, M.W., Smith, H.I., Silversmith, D.J., Mountain, R.W. and Thompson, C.V., J. Electrochem. Soc. 130, 1178 (1983).Google Scholar
7.Billings, A.R., J. Vac. Sci. Tech. 6, 757 (1967).Google Scholar
8.Williamson, W.J., J. Vac. Sci. Tech. 6, 765 (1967).Google Scholar
9.Clawson, A.R., Thin Solid Films, 12, 291 (1972).Google Scholar
10.Clawson, A.R., J. Vac. Sci. Tech. 6, 269 (1967).Google Scholar
11.Teede, N., Ph.D. Thesis (1969), University of Western Australia.Google Scholar
12.Keavney, C.J., M.S. Thesis (1983), Massachusetts Institute of Technology.Google Scholar
13.Keavney, C.J., Atwater, H.A., Smith, H.I. and Geis, M.W., Proc. of III-V Opto-Electronics Epitaxy and Device Related Processes, ed. Keramides, V.G. and Mahajan, S., (Electrochem. Soc. Meeting, San Francisco, 1983), to be published.Google Scholar
14.Bezjian, K.A., Smith, H.I., Carter, J.M. and Geis, M.W., J. Electrochem. Soc. 129, 1848 (1982).Google Scholar
15.Billing, E., J. Inst. Metals 82, 1565 (1954).Google Scholar
16.Bolling, G.F., Tiller, W.A. and Rutter, J.W., Can. J. Phys. 34, 234 (1956).Google Scholar