Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-15T17:24:52.834Z Has data issue: false hasContentIssue false

ZnO-based transparent anodes for organic light-emitting devices

Published online by Cambridge University Press:  07 July 2011

K. Sivaramakrishnan
Affiliation:
School of Materials and Flexible Display Center at ASU, Arizona State University, Tempe, Arizona 85287, USA
N. Bakken
Affiliation:
School of Materials and Flexible Display Center at ASU, Arizona State University, Tempe, Arizona 85287, USA
T. L. Alford
Affiliation:
School of Materials and Flexible Display Center at ASU, Arizona State University, Tempe, Arizona 85287, USA
Get access

Abstract

ZnO/Au/ZnO (ZAZ) electrodes grown on flexible PEN substrates were evaluated as transparent electrodes for organic light-emitting devices (OLEDs). OLEDs fabricated with the ZAZ electrodes showed reduced leakage in contrast to control OLEDs on ITO and reduced ohmic losses at high current densities. At a luminance of 25000 cd/m2, the lum/W efficiency of the ZAZ electrode based device was 5% greater than for the device on ITO. The ZAZ electrodes also allow for a broader spectral output in the green wavelength region of peak photopic sensitivity compared to ITO. The results have implications for electrode choice in display technology.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ghosh, D. S., Chen, T. L., and Pruneri, V., Appl. Phys. Lett. 96, 041109 (2010)10.1063/1.3299259Google Scholar
2. Sivaramakrishnan, K., Ngo, A. T., Iyer, S., and Alford, T. L., J. Appl. Phys. 105, 063525 (2009)10.1063/1.3100043Google Scholar
3. Gordon, R. G., MRS Bulletin 25, 52 (2000)Google Scholar
4. Look, D. C., Leedy, K. D., Tomich, D. H., and Bayraktaroglu, B., Appl. Phys. Lett. 96, 062102 (2010)10.1063/1.3310043Google Scholar
5. Kim, H., Pique, A., Horwitz, J. S., Mattoussi, H., Murata, H., Kafafi, Z. H., and Chrisey, D. B., Appl. Phys. Lett. 74, 3444 (1999)Google Scholar
6. Zhang, S. X., Dhar, S., Yu, W., Xu, H., Ogale, S. B., and Venkatesan, T., Appl. Phys. Lett. 91, 112113 (2007)Google Scholar
7. Morales-Paliza, M. A., Haglund, R. F., and Feldman, L. C., Appl. Phys. Lett. 80, 3757 (2002)] 10.1063/1.1481243Google Scholar
8. Phillips, J. M., Cava, R. J., Thomas, G. A., Carter, S. A., Kwo, J., Siegrist, T., Krajewski, J. J., Marshall, J. H., Peck, W. F. Jr., and Rapkine, D. H., Appl. Phys. Lett. 67, 2247 (1995)Google Scholar
9. Lewis, J., Grego, S., Chalamala, B., Vick, E., and Temple, D., Appl. Phys. Lett. 85, 3450 (2004)Google Scholar
10. Miller, A. J., Hatton, R. A., Chen, G. Y., and Silva, S. R. P., Appl. Phys. Lett. 90, 023105 (2007)Google Scholar
11. Wong, K. W., Yip, H. L., Luo, Y., Wong, K. Y., and Lau, W. M., Appl. Phys. Lett. 80, 2788 (2002)10.1063/1.1469220Google Scholar
12. Lee, S. T., Gao, Z. Q., and Hung, L. S., Appl. Phys. Lett. 75, 1404 (1999)10.1063/1.124708Google Scholar
13. Schlatmann, A. R., Wilms Floet, D., Hilberer, A., Garten, F., Smulders, P. J. M., Klapwijk, T. M., and Hadziioannou, G., Appl. Phys. Lett. 69, 1764 (1996)Google Scholar
14. Ghosh, D. S., Martinez, L., Giurgola, S., Vergani, P., and Pruneri, V., Opt. Lett. 34, 325 (2009)10.1364/OL.34.000325Google Scholar
15. Kim, J. S., Friend, R. H., and Cacialli, F., Appl. Phys. Lett. 74, 3084 (1999)10.1063/1.124069Google Scholar
16. Andersson, A., Johansson, N., Broms, P., Yu, N., Lupo, D., and Salaneck, W. R., Adv. Mater. 10, 859 (1998)Google Scholar
17. Rogozin, A., Shevchenko, N., Vinnichenko, M., Prokert, F., Cantelli, V., Kolitsch, A., and Moller, W., Appl. Phys. Lett. 85, 212 (2004)Google Scholar
18. Wu, C. C., Wu, C. I., Sturm, J. C., Kahn, A., Appl. Phys. Lett. 70, 1348 (1997)10.1063/1.118575Google Scholar
19. Phillips, J. M., Kwo, J., Thomas, G. A., Carter, S. A., Cava, R. J., Hou, S. Y., Krajewski, J. J., Marshall, J. H., Peck, W. F., Rapkine, D. H., and van Dover, R. B., Appl. Phys. Lett. 65, 115 (1994)10.1063/1.113052Google Scholar
20. O’Connor, B., Haughn, C., An, K. H., Pipe, K. P., and Shtein, M., Appl. Phys. Lett. 93, 223304 (2008)Google Scholar
21. Han, H., Theodore, N. D., and Alford, T. L., J. Appl. Phys. 103, 013708 (2008)10.1063/1.2829788Google Scholar
22. Sivaramakrishnan, K., and Alford, T. L., Appl. Phys. Lett. 94, 052104 (2009)Google Scholar
23. Sivaramakrishnan, K., and Alford, T. L., Appl. Phys. Lett. 96, 201109 (2010)10.1063/1.3435467Google Scholar
24. Liu, G., Kerr, J. B., and Johnson, S., Synth. Met. 144, 1 (2004)10.1016/j.synthmet.2004.01.011Google Scholar
25. Jonda, Ch., Mayer, A. B. R., Stolz, U., Elschner, A., Karbach, A., J. Mater. Sci. 35, 5635 (2000)Google Scholar