Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T03:46:50.426Z Has data issue: false hasContentIssue false

ZnO Light-Emission Array Fabricated into Nanometer-scale Pits on Silicon Substrate

Published online by Cambridge University Press:  01 February 2011

Naoki Ohashi
Affiliation:
[email protected], National Institute for Mterials Science, Advanced Materials Laboratory, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan, +81-29-860-4665, +81-29-855-1196
Isao Sakaguchi
Affiliation:
Takashi Sekiguchi
Affiliation:
Hajime Haneda
Affiliation:
Kazuyoshi Kobayashi
Affiliation:
Hidetoshi Masauda
Affiliation:
Hirokazu Chazono
Affiliation:
Masayuki Fujimoto
Affiliation:
Get access

Abstract

A nanometer-scale ZnO light emission array device was fabricated using the multi-level metallization technique of the CMOS process. Square arrays of pits with an inverted pyramid shape made from {111}Si planes were formed on a (100)Si substrate using selective etching. ZnO was deposited on the substrate by chemical vapor deposition (CVD), and the surface of the deposited ZnO film was carefully polished by chemical mechanical planarization (CMP). As a result, ZnO-filled nanometer-scale arrays were obtained after removing the ZnO layer except for the ZnO in the pits by CMP. Cathodoluminescence (CL) from the ZnO arrays was observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morimoto, K., in Phosphor Handbook, edited by Shionoya, S. and Chen, W.M. (CRC Press, Boca Raton, FL, 1998) Chapter 8, p. 561.Google Scholar
2. Akasaki, I., Amano, H., Kito, M. and Hiramatsu, K., J. Luminesc. 48/49, 666 (1991).Google Scholar
3. Nakamura, S., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys., 30, L1998 (1991).Google Scholar
4. Nakamura, S., Senoh, M., Nagashima, S., Iwase, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, T., Jpn. J. Appl. Phys., 35, L74 (1996).Google Scholar
5. Ohtomo, A., Tamura, K., Saikusa, K., Makino, T., Segawa, Y., Koinuma, H. and Kawasaki, M., Appl. Phys. Lett., 75, 2635 (1999).Google Scholar
6. Bagnall, D.M., Chen, Y. F., Zhu, Z., Yao, T., Koinuma, S., Sen, M.Y., and Goto, T., Appl. Phys. Lett., 70, 2230 (1997).Google Scholar
7. Reynolds, D.C., Look, D.C., and Jogai, B., Solid State Commun, 99, 869 (1996).Google Scholar
8. Yu, P., Tang, Z.K., Wong, G.K.L., Kawasaki, M., Ohtomo, A., Koinuma, H. and Segawa, Y., J. Cryst. Growth, 184, 601 (1998).Google Scholar
9. Ohta, H., Kawamura, K., Orita, M., Hirano, M., Sarukura, N., and Hosono, H., Appl. Phys. Lett., 77, 475 (2000).Google Scholar
10. Ohashi, N., Ishigaki, T., Okada, N., Sekiguchi, T., Sakaguchi, I., and Haneda, H., Appl. Phys. Lett., 80, 2689 (2002).Google Scholar
11. Ohashi, N., Ebisawa, N., Sekiguchi, T., Sakaguchi, I., Wada, Y., Takenaka, T., and Haneda, H., Appl. Phys. Lett., 86, 091902 (2005).Google Scholar
12. Izaki, M., Omi, T., J. Electrochem. Soc., 144, L3 (1997).Google Scholar
13. Izaki, M., Katayama, J., J. Electrochem. Soc., 147, 210 (2000).Google Scholar
14. Saito, N., Haneda, H., Sekiguchi, T., Ohashi, N., Sekiguchi, I. and Koumoto, K., Adv. Mater., 14, 418 (2002).Google Scholar
15. Saito, N., Haneda, H., Sekiguchi, T., Ishigaki, T., Koumoto, K., J. Electrochem. Soc.,, 151, H169 (2004).Google Scholar
16. Davis, J. A., Kaloyeros, R., Beylansky, M., Souri, S. J., Banerjee, K., Rahman, A., Sraswat, K. C., Reif, R., and Meindl, J.D., Proc. of the IEEE, 89, 305 (2001).Google Scholar