Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:40:29.692Z Has data issue: false hasContentIssue false

ZnGeP2: A Wide Bandgap Chalcopyrite Structure Semiconductor for Nonlinear Optical Applications

Published online by Cambridge University Press:  26 February 2011

G. C. Xing
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7907
K. J. Bachmann
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7907
J. B. Posthill
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709–2194
M. L. Timmons
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709–2194
Get access

Abstract

In this paper we report the growth and characterization of wide bandgap chalcopyrite structure semiconductor ZnGeP2 epitaxial layers by open tube MOCVD and ZnGeP2 single crystals by high-pressure vapor transport (HPVT). The electrical and optical properties of these crystals have been investigated by Hall measurements, absorption spectroscopy, photoconductivity and photoluminescence spectroscopy. The onset of the absorption edge for HPVT ZnGeP2 at 1.99 eV is in accord with the pseudodirect bandgap of this material. Both the meltgrown crystals and epitaxial layers show extended band tailing in the transparency range of ZnGeP2 depending on the growth conditions. Recently we have shown that epitaxial ZnGeP2 films can be grown with excellent surface morphology by MOCVD on (111) GaP substrates. These films should be suitable for phase matched second harmonic generation utilizing CO laser radiation in thick film heterostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mickelsen, R.A. and Chen, W.S., in Proc. of the 5th IEEE Photovoltaic Specialists Conference, 1981 (IEEE, New York, 1981), p. 800, IEEE Publ. 81CH 1644–4.Google Scholar
2. Shay, J.L. and Wernick, J.H., Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications, (Pergamon, Oxford, 1975).Google Scholar
3. Grigoreva, V.S., Lebedev, A.A., Ovesov, K., Prochukhan, V.D., Rud, Yu.V. and Yakovenko, A.A., Fiz. Tekh. Poluprov. 9, 1605 (1975).Google Scholar
4. Shileika, A., Surface Sci., 37, 730 (1973).Google Scholar
5. Boyd, G.D., Buehler, E. and Storz, F.G., Appl. Phys. Lett., 18, 301 (1971).Google Scholar
6. Boyd, G.D., Gandrud, W.B. and Buehler, E., Appl. Phys. Lett., 18, 446 (1971).Google Scholar
7. Andreev, Yu. M., Belykh, A.D., Voevodin, V.G., Geiko, P.P., Gribenyukov, A.I., Gurashvili, V.A. and Izyumov, S.V., Sov. J. Quantum Electron., 17, 490 (1987).Google Scholar
8. Yu.Andreev, M., Vedernikova, T.V., Betin, A.A., Voevodin, V.G., Gribenyukov, A.I., Zyryanov, O.Ya., Ippolitov, I.I., Masychev, V.I., Mitropol'skii, O.V., Novikov, V.P., Novikov, M.A. and Sosnin, A.V., Soy. J. Quantum Electron., 15, 1014 (1985).Google Scholar
9. Xing, G.C., Bachmann, K.J., Solomon, G.S., Posthill, J.B. and Timmons, M.L. J. Cryst. Growth, 94, 381 (1989).Google Scholar
10. Xing, G.C., Bachmann, K.J. and Posthill, J.B., Appl. Phys. Lett., in press.Google Scholar
11. Xing, G.C., Bachmann, K.J., Posthill, J.B., Solomon, G.S. and Timmons, M.L. in: Heteroepitaxial Approaches in Semiconductors: Lattice Mismatch and Its Consequences, Eds. Macrander, A.T. and Drummond, T.J., (The Electrochemical Society, Pennington, New Jersey 1989) 132.Google Scholar
12. Averkieva, G.K., Grigoreva, V.S., Maltseva, I.A., Prochukhan, V.D. and Yu.Rud, V., Phys. Stat. Sol. (a) 39, 453 (1977).Google Scholar