Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T11:04:51.538Z Has data issue: false hasContentIssue false

ZnCdSeTe Semiconductor Compounds: Preparation and Properties

Published online by Cambridge University Press:  12 July 2011

Vello Valdna
Affiliation:
Department of Materials Science, Tallinn University of Technology, 5 Ehitajate Rd., 19086 Tallinn, Estonia
Maarja Grossberg
Affiliation:
Department of Materials Science, Tallinn University of Technology, 5 Ehitajate Rd., 19086 Tallinn, Estonia
Jaan Hiie
Affiliation:
Department of Materials Science, Tallinn University of Technology, 5 Ehitajate Rd., 19086 Tallinn, Estonia
Urve Kallavus
Affiliation:
Centre for Materials Research, Tallinn University of Technology, 5 Ehitajate Rd., 19086 Tallinn, Estonia
Valdek Mikli
Affiliation:
Centre for Materials Research, Tallinn University of Technology, 5 Ehitajate Rd., 19086 Tallinn, Estonia
Taavi Raadik
Affiliation:
Department of Materials Science, Tallinn University of Technology, 5 Ehitajate Rd., 19086 Tallinn, Estonia
Rainer Traksmaa
Affiliation:
Centre for Materials Research, Tallinn University of Technology, 5 Ehitajate Rd., 19086 Tallinn, Estonia
Mart Viljus
Affiliation:
Centre for Materials Research, Tallinn University of Technology, 5 Ehitajate Rd., 19086 Tallinn, Estonia
Get access

Abstract

Group II-VI narrow band gap compounds CdTe ZnCdTe and CdSeTe are known as the most suitable semiconductor materials for the room temperature gamma- and X-ray radiation detectors. In this work we investigated electronic properties of a quaternary compound ZnCdSeTe. Cl Cu Pr Er and oxygen doped host materials were synthesized from the grinded mixture of 6N purity ZnTe CdTe and CdSe by the help of CdCl2 flux. Precautions were applied to achieve an uniform doping and high quality of the crystal surfaces. Residue phases after the thermal treatments were removed by the help of a vacuum annealing. It was found that Zn increases a substitutional solubility of dopants in ZnCdSeTe and thus promotes optoelectronic properties of the ZnCdSeTe alloy. Cl substitutes Te whereas Cu and rare earth elements substitute Zn in ZnCdSeTe. Fabricated polycrystalline samples showed a high performance from NIR via VIS and UV to X-ray band. High stability good linearity and performance of samples was measured under X-ray excitation of Cu Kα 1.54056 Å at 40 kV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fiederle, M.,Ebling, D.,Eiche, C.,Hofmann, D. M.,Salk, M. Stadler, W.,Benz, K. W.,Meyer, B. K., Journal of Crystal Growth 138, 529 (1994).Google Scholar
2. Valdna, V., “p-Type Doping of CdTe”, in Polycrystalline Semiconductors V – Bulk Materials, Thin Films, and Devices, Werner, J. H.,Strunk, H. P.,Schock, H. W.,eds., in Series “Solid State Phenomena” 6768, pp. 309314, Scitech Publ., Uettikon am See, Switzerland, 1999.Google Scholar
3. Valdna, V., Solar Energy Materials & Solar Cells 87, 369 (2005).Google Scholar
4. Valdna, V., Thin Solid Films 387, 192 (2001).Google Scholar
5. Yu, T.-C. and Brebrick, R. F., “Phase diagrams of Cd/Zn/Te/Se compounds”, inProperties of Narrow Gap Cadmium-based Compounds Edited by Capper, Peter, pp. 412419, INSPEC, the Institution of Electrical Engineers, London, United Kingdom, 1994.Google Scholar
6. Sudharsanan, R.,Vakerlis, G. D. and Karam, N. H., Journal of Electronic Materials 26, 745 (1997).Google Scholar
7. Giakos, George C.,Vedantham, S.,Chowdhury, S. Odogba, J.,Dasgupta, A.,Guntupalli, R.,Suryanarayanan, S.,Vega-Lozada, V.,Sridhar, M.,Khyati, M.andShah, N., IEEE Transactions on Instrumentation and Measurement 48, 909 (1999).Google Scholar
8. Mandal, Krihna C.,Hoon Kang, Sung,Choi, Michael,Bello, Job,Cheng, Lili,Zhang, Hui,Groza, Michael,Roy, Utpal N.,Burger, Arnold,Jellison, Gerald E.,Holcomb, David E.,Wright, Gomez W.andWilliams, Joseph A., Journal of Electronic Materials 35, 1251 (2006).Google Scholar
9. Yoo, S. S.,Jennings, G. and Montano, P. A., Journal of Electronic Materials 26, 750 (1997).Google Scholar
10. Niraula, M.,Yasuda, K.,Ohnishi, H. Takahashi, H.,Eguchi, K. Noda, K. and Agata, Y. Journal of Electronic Materials 35, 1257 (2006).Google Scholar
11. Allen, J. W., Semicond. Sci. Technol. 10 1049 (1995).Google Scholar
12. Kishida, S. Matsuura, K..Mori, H. Mizucuchi, Y.andTsurumi, I. phys. stat. sol. (a) 109, 617 (1988).Google Scholar