Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:54:27.415Z Has data issue: false hasContentIssue false

ZITO (ZnO-SnO2-In2O3 ) Transparent Conducting Oxides: Electrical and Optical Properties of DC Magnetron Sputtered Films

Published online by Cambridge University Press:  26 February 2011

Cleva Ow-Yang
Affiliation:
[email protected], Sabanci University, Faculty of Engineering & Natural Sciences, Orhanli, Tuzla, Istanbul, 34956, Turkey, +90 216 483 9592, +90 216 483 9550
Hyo-Yong Yeom
Affiliation:
[email protected], Brown University, Division of Engineering, United States
Burag Yaglioglu
Affiliation:
[email protected], Brown University, Division of Engineering, United States
David C. Paine
Affiliation:
[email protected], Brown University, Division of Engineering, United States
Get access

Abstract

Amorphous ZITO films were deposited by dc magnetron sputtering onto glass substrates from ceramic oxide targets containing Zn:In:Sn cation ratios of 1:2:1 and 1:2:1.5. The microstructure, carrier density, mobility, and resistivity of as-deposited and annealed samples were evaluated using x-ray diffraction and Hall effect measurements. The as-deposited films were amorphous and remained so after annealing at 200°C in air for up to five hours. Transmissivity of the films exceeded 80% in the visible spectral region. The minimum resistivity value (7.6×10−4 Ω-cm) was obtained from thin films deposited using the 1:2:1 composition target and a substrate temperature of 300°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Song, P.K., S., Y., Yasui, I., Ow-Yang, C.W., Paine, D.C., Jpn. J. Appl. Phys. 37, 18701876 (1998).Google Scholar
2 Ow-Yang, C.W., S., D., Shigesato, Y., Paine, D.C., J. Appl. Phys. 83(1),145154 (1998).Google Scholar
3 Taylor, M.P., R., D.W., Teplin, C.W., van Hest, M.F., Alleman, J.L., Dabney, M.S., Gedvilas, L.M., Keyes, B.M., To, B., Parilla, P.A., Perkins, J.D., Ginley, D.S., Macromolecular Rapid Communications 25, 34443447 (2004).Google Scholar
4 Yaglioglu, B., Y., H., Paine, D.C., Appl. Phys. Lett. 87(2), 13 (2005).Google Scholar
5 Moriga, T., , T., Edwards, D.D., Mason, T.O., Palmer, G.B., Poeppelmeier, K.R., Schindler, J.L., Kannewurf, C.R., Nakabayashi, I., J. Am. Ceram. Soc. 81(5), 13101316 (1998).Google Scholar
6 Bellingham, J.R., P., W.A., Adkins, C.J., J. Phys.: Condens. Mat. 2, 62076221 (1990).Google Scholar
7 Song, P.K., A., H., Kamei, M., Shigesato, Y., Yasui, I., Jpn. J. Appl. Phys. 38, 52245226 (1999).Google Scholar
8 Yaglioglu, B., H., Y.-J., Yeom, H., Paine, D.C., Thin Solid Films 496, 8994 (2006).Google Scholar
9 Freeman, A.J., P., K.R., Mason, T.O., Chang, R.P.H., Marks, T.J., Mater. Res. Soc. Bull., 25(8), 4551 (2000).Google Scholar
10 Phillips, J. M., C., R.J., Thomas, G.A., Carter, S.A., Kwo, J., Siegrist, T., Krajewski, J.J., Marshall, J.H., Peck, W.F. Jr., and Rapkine, D.H., Appl. Phys. Lett. 67(15), 22462248 (1995).Google Scholar
11 Minami, T., Mater. Res. Soc. Bull. 25(8), 3844 (2000).Google Scholar
12 Tauc, J., G., R., and Vancu, A., Phys. Status Solidi 15, 627 (1966).Google Scholar
13 Hamberg, I. and Granqvist, C.G., J. Appl. Phys. 60(11), R123 (1986).Google Scholar